6 research outputs found

    Fairness in Credit Scoring: Assessment, Implementation and Profit Implications

    Full text link
    The rise of algorithmic decision-making has spawned much research on fair machine learning (ML). Financial institutions use ML for building risk scorecards that support a range of credit-related decisions. Yet, the literature on fair ML in credit scoring is scarce. The paper makes two contributions. First, we provide a systematic overview of algorithmic options for incorporating fairness goals in the ML model development pipeline. In this scope, we also consolidate the space of statistical fairness criteria and examine their adequacy for credit scoring. Second, we perform an empirical study of different fairness processors in a profit-oriented credit scoring setup using seven real-world data sets. The empirical results substantiate the evaluation of fairness measures, identify more and less suitable options to implement fair credit scoring, and clarify the profit-fairness trade-off in lending decisions. Specifically, we find that multiple fairness criteria can be approximately satisfied at once and identify separation as a proper criterion for measuring the fairness of a scorecard. We also find fair in-processors to deliver a good balance between profit and fairness. More generally, we show that algorithmic discrimination can be reduced to a reasonable level at a relatively low cost.Comment: Preprint submitted to European Journal of Operational Researc

    Machine Learning for Credit Risk Analytics

    No full text
    Der Aufstieg des maschinellen Lernens (ML) und die rasante Digitalisierung der Wirtschaft haben die Entscheidungsprozesse in der Finanzbranche erheblich verändert. Finanzinstitute setzen zunehmend auf ML, um die Entscheidungsfindung zu unterstützen. Kreditscoring ist eine der wichtigsten ML-Anwendungen im Finanzbereich. Die Aufgabe von Kreditscoring ist die Unterscheidung ob ein Antragsteller einen Kredit zurückzahlen wird. Finanzinstitute verwenden ML, um Scorecards zu entwickeln, die die Ausfallwahrscheinlichkeit eines Kreditnehmers einschätzen und Genehmigungsentscheidungen automatisieren. Diese Dissertation konzentriert sich auf drei große Herausforderungen, die mit dem Aufbau von ML-basierten Scorekarten für die Bewertung von Verbraucherkrediten verbunden sind: (i) Optimierung von Datenerfassungs- und -speicherkosten bei hochdimensionalen Daten von Kreditantragstellern; (ii) Bewältigung der negativen Auswirkungen von Stichprobenverzerrungen auf das Training und die Bewertung von Scorekarten; (iii) Messung und Sicherstellung der Fairness von Instrumenten bei gleichzeitig hoher Rentabilität. Die Arbeit bietet und testet eine Reihe von Instrumenten, um jede dieser Herausforderungen zu lösen und die Entscheidungsfindung in Finanzinstituten zu verbessern. Erstens entwickeln wir Strategien zur Auswahl von Merkmalen, die mehrere unternehmensbezogene Zielfunktionen optimieren. Unsere Vorschläge reduzieren die Kosten der Datenerfassung und verbessern die Rentabilität der Modelle. Zweitens schlagen wir Methoden zur Abschwächung der negativen Auswirkungen von Stichprobenverzerrungen vor. Unsere Vorschläge gleichen die Verluste aufgrund von Verzerrungen teilweise aus und liefern zuverlässigere Schätzungen der künftigen Scorecard-Leistung. Drittens untersucht die Arbeit faire ML-Praktiken in Kreditscoring. Wir katalogisieren geeignete algorithmische Optionen für die Einbeziehung von Fairness-Zielen und verdeutlichen den Kompromiss zwischen Gewinn und Fairness.The rise of machine learning (ML) and the rapid digitization of the economy has substantially changed decision processes in the financial industry. Financial institutions increasingly rely on ML to support decision-making. Credit scoring is one of the prominent ML applications in finance. The task of credit scoring is to distinguish between applicants who will pay back the loan or default. Financial institutions use ML to develop scoring models to estimate a borrower's probability of default and automate approval decisions. This dissertation focuses on three major challenges associated with building ML-based scorecards in consumer credit scoring: (i) optimizing data acquisition and storage costs when dealing with high-dimensional data of loan applicants; (ii) addressing the adverse effects of sampling bias on training and evaluation of scoring models; (iii) measuring and ensuring the scorecard fairness while maintaining high profitability. The thesis offers a set of tools to remedy each of these challenges and improve decision-making practices in financial institutions. First, we develop feature selection strategies that optimize multiple business-inspired objectives. Our propositions reduce data acquisition costs and improve model profitability and interpretability. Second, the thesis illustrates the adverse effects of sampling bias on model training and evaluation and suggests novel bias correction frameworks. The proposed methods partly recover the loss due to bias, provide more reliable estimates of the future scorecard performance and increase the resulting model profitability. Third, the thesis investigates fair ML practices in consumer credit scoring. We catalog algorithmic options for incorporating fairness goals in the model development pipeline and perform empirical experiments to clarify the profit-fairness trade-off in lending decisions and identify suitable options to implement fair credit scoring and measure the scorecard fairness

    A Multi-Objective Approach for Profit-Driven Feature Selection in Credit Scoring

    No full text
    © 2019 In credit scoring, feature selection aims at removing irrelevant data to improve the performance of the scorecard and its interpretability. Standard techniques treat feature selection as a single-objective task and rely on statistical criteria such as correlation. Recent studies suggest that using profit-based indicators may improve the quality of scoring models for businesses. We extend the use of profit measures to feature selection and develop a multi-objective wrapper framework based on the NSGA-II genetic algorithm with two fitness functions: the Expected Maximum Profit (EMP) and the number of features. Experiments on multiple credit scoring data sets demonstrate that the proposed approach develops scorecards that can yield a higher expected profit using fewer features than conventional feature selection strategies.status: publishe

    A multi-objective approach for profit-driven feature selection in credit scoring

    No full text
    In credit scoring, feature selection aims at removing irrelevant data to improve the performance of the scorecard and its interpretability. Standard techniques treat feature selection as a single-objective task and rely on statistical criteria such as correlation. Recent studies suggest that using profit-based indicators may improve the quality of scoring models for businesses. We extend the use of profit measures to feature selection and develop a multi-objective wrapper framework based on the NSGA-II genetic algorithm with two fitness functions: the Expected Maximum Profit (EMP) and the number of features. Experiments on multiple credit scoring data sets demonstrate that the proposed approach develops scorecards that can yield a higher expected profit using fewer features than conventional feature selection strategies

    AI in Finance: A Review

    No full text
    corecore