317 research outputs found

    Optical depth for VHE gamma-rays from distant sources from a generic EBL density

    Full text link
    Very-high-energy (VHE; E>100GeV) gamma-rays from distant sources suffer attenuation through pair-production with low energy photons from the diffuse extragalactic photon fields in the ultraviolet (UV) to far-infrared (FIR) (commonly referred to as Extragalactic Background Light; EBL). When modeling the intrinsic spectra of the VHE gamma-ray sources it is crucial to correctly account for the attenuation. Unfortunately, direct measurements of the EBL are difficult and the knowledge about the EBL over certain wavelength ranges is poor. To calculate the EBL attenuation usually predictions from theoretical models are used. Recently, the limits on the EBL from direct and indirect methods have narrowed down the possible EBL range and many of the previous models are in conflict with these limits. We propose a new generic EBL density (not a complete model), which is in compliance with the new EBL limits. EBL evolution with redshift is included in the calculation in a very simple but effective ad-hoc way. Properties of this generic EBL are discussed.Comment: Proceedings of the workshop 'High Energy Phenomena in Relativistic Outflows' (HEPRO), Dublin, 24-28 September 200

    Infra-red divergences in plane wave backgrounds

    Get PDF
    We show that the emission of soft photons via nonlinear Compton scattering in a pulsed plane wave (laser field) is in general infra-red divergent. We give examples of both soft and soft-collinear divergences, and we pay particular attention to the case of crossed fields in both classical and quantum theories.Comment: 15 pages, 7 figure

    Vector boson in constant electromagnetic field

    Get PDF
    The propagator and complete sets of in- and out-solutions of wave equation, together with Bogoliubov coefficients, relating these solutions, are obtained for vector WW-boson (with gyromagnetic ratio g=2g=2) in a constant electromagnetic field. When only electric field is present the Bogoliubov coefficients are independent of boson polarization and are the same as for scalar boson. When both electric and magnetic fields are present and collinear, the Bogoliubov coefficients for states with boson spin perpendicular to the field are again the same as in scalar case. For W−W^- spin along (against) the magnetic field the Bogoliubov coefficients and the contributions to the imaginary part of the Lagrange function in one loop approximation are obtained from corresponding expressions for scalar case by substitution m2→m2+2eHm^2\to m^2+2eH (m2→m2−2eH)(m^2\to m^2-2eH). For gyromagnetic ratio g=2g=2 the vector boson interaction with constant electromagnetic field is described by the functions, which can be expected by comparing wave functions for scalar and Dirac particle in constant electromagnetic field.Comment: 20 pages, LATEX2e, no figure

    Signatures of High-Intensity Compton Scattering

    Full text link
    We review known and discuss new signatures of high-intensity Compton scattering assuming a scenario where a high-power laser is brought into collision with an electron beam. At high intensities one expects to see a substantial red-shift of the usual kinematic Compton edge of the photon spectrum caused by the large, intensity dependent, effective mass of the electrons within the laser beam. Emission rates acquire their global maximum at this edge while neighbouring smaller peaks signal higher harmonics. In addition, we find that the notion of the centre-of-mass frame for a given harmonic becomes intensity dependent. Tuning the intensity then effectively amounts to changing the frame of reference, going continuously from inverse to ordinary Compton scattering with the centre-of-mass kinematics defining the transition point between the two.Comment: 25 pages, 16 .eps figure

    Consistency restrictions on maximal electric field strength in QFT

    Full text link
    QFT with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2eET^2, one can see that the leading contributions to the energy are due to the creation of paticles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreactionComment: 7 pages; version accepted for publication in Phys. Rev. Lett.; added one ref. and some comment

    The probability distribution of the number of electron-positron pairs produced in a uniform electric field

    Full text link
    The probability-generating function of the number of electron-positron pairs produced in a uniform electric field is constructed. The mean and variance of the numbers of pairs are calculated, and analytical expressions for the probability of low numbers of electron-positron pairs are given. A recursive formula is derived for evaluating the probability of any number of pairs. In electric fields of supercritical strength |eE| > \pi m^2/ \ln 2, where e is the electron charge, E is the electric field, and m is the electron mass, a branch-point singularity of the probability-generating function penetrates the unit circle |z| = 1, which leads to the asymptotic divergence of the cumulative probability. This divergence indicates a failure of the continuum limit approximation. In the continuum limit and for any field strength, the positive definiteness of the probability is violated in the tail of the distribution. Analyticity, convergence, and positive definiteness are restored upon the summation over discrete levels of electrons in the normalization volume. Numerical examples illustrating the field strength dependence of the asymptotic behavior of the probability distribution are presented.Comment: 7 pages, REVTeX, 4 figures; new references added; a short version of this e-print has appeared in PR

    Dirac fermions in strong electric field and quantum transport in graphene

    Get PDF
    Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found; the vacuum polarization and particle creation contributions to these mean values are isolated in the large T-limit, the vacuum polarization contributions being related to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2+1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a semiclassical approximation for carriers and does not use any statistical assumtions inherent in the Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the graphene, taking into account the backreaction of the matter field to the applied external field. We find solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the effective mean electromagnetic field and effective mean values of the current and the energy-momentum tensor. The nonlinear and linear I-V characteristics experimentally observed in both low and high mobility graphene samples is quite well explained in the framework of the proposed approach, their peculiarities being essentially due to the carrier creation from the vacuum by the applied electric field.Comment: 24 pages, 1 figure; version accepted for publication in Physical Review D., some comments adde

    Production of high energy particles in laser and Coulomb fields and e^+e^- antenna

    Full text link
    A strong laser field and the Coulomb field of a nucleus can produce e^{+}e^{-} pairs. It is shown for the first time that there is a large probability that electrons and positrons created in this process collide after one or several oscillations of the laser field. These collisions can take place at high energy resulting in several phenomena. The quasielastic collision e^{+}e^{-} -> e^{+}e^{-} allows acceleration of leptons in the laser field to higher energies. The inelastic collisions allow production of high energy photons e^{+}e^{-}-> 2 gamma and muons, e^{+}e^{-} -> mu^{+}mu^{-}. The yield of high-energy photons and muons produced via this mechanism exceeds exponentially their production through conventional direct creation in laser and Coulomb fields. A relation of the phenomena considered with the antenna-mechanism of multiphoton absorption in atoms is discussed.Comment: 4 page

    Black hole collapse simulated by vacuum fluctuations with a moving semi-transparent mirror

    Full text link
    Creation of scalar massless particles in two-dimensional Minkowski space-time--as predicted by the dynamical Casimir effect--is studied for the case of a semitransparent mirror initially at rest, then accelerating for some finite time, along a trajectory that simulates a black hole collapse (defined by Walker, and Carlitz and Willey), and finally moving with constant velocity. When the reflection and transmission coefficients are those in the model proposed by Barton, Calogeracos, and Nicolaevici [r(w)=-i\alpha/(\w+i\alpha) and s(w)=\w/(\w+i\alpha), with α≥0\alpha\geq 0], the Bogoliubov coefficients on the back side of the mirror can be computed exactly. This allows us to prove that, when α\alpha is very large (case of an ideal, perfectly reflecting mirror) a thermal emission of scalar massless particles obeying Bose-Einstein statistics is radiated from the mirror (a black body radiation), in accordance with results previously obtained in the literature. However, when α\alpha is finite (semitransparent mirror, a physically realistic situation) the striking result is obtained that the thermal emission of scalar massless particles obeys Fermi-Dirac statistics. We also show here that the reverse change of statistics takes place in a bidimensional fermionic model for massless particles, namely that the Fermi-Dirac statistics for the completely reflecting situation will turn into the Bose-Einstein statistics for a partially reflecting, physical mirror.Comment: 13 pages, no figures, version to appear in Physical Review

    Radiating electron source generation in ultraintense laser-foil interactions

    Get PDF
    A radiating electron source is shown to be created by a laser pulse (with intensity of 10^23 W/cm^2 and duration equal to 30 fs) interacting with a near-critical density plasma. It is shown that the back radiation reaction resulting from high energy synchrotron radiation tends to counteract the action of the ponderomotive force. This enhances the collective dynamics of the radiating electrons in the highest field areas, resulting in the production of a compact radiation source (containing 80% of the synchrotron radiation emission), with an energy on the order of tens of MeV over the laser pulse duration. These phenomena are investigated using a QED-particle-in-cell code, and compared with a kinetic model accounting for the radiation reaction force in the electron distribution function. The results shed new light on electron-photon sources at ultra-high laser intensities and could be tested on future laser facilities
    • …
    corecore