92 research outputs found

    Real-Time Molecular Imaging of Tricarboxylic Acid Cycle Metabolism in Vivo by Hyperpolarized 1-^(13)C Diethyl Succinate

    Get PDF
    The Krebs tricarboxylic acid cycle (TCA) is central to metabolic energy production and is known to be altered in many disease states. Real-time molecular imaging of the TCA cycle in vivo will be important in understanding the metabolic basis of several diseases. Positron emission tomography (PET) with FDG-glucose (2-[^(18)F]fluoro-2-deoxy-d-glucose) is already being used as a metabolic imaging agent in clinics. However, FDG-glucose does not reveal anything past glucose uptake and phosphorylation. We have developed a new metabolic imaging agent, hyperpolarized diethyl succinate-1-^(13)C-2,3-d_2 , that allows for real-time in vivo imaging and spectroscopy of the TCA cycle. Diethyl succinate can be hyperpolarized via parahydrogen-induced polarization (PHIP) in an aqueous solution with signal enhancement of 5000 compared to Boltzmann polarization. ^(13)C magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) were achieved in vivo seconds after injection of 10–20 μmol of hyperpolarized diethyl succinate into normal mice. The downstream metabolites of hyperpolarized diethyl succinate were identified in vivo as malate, succinate, fumarate, and aspartate. The metabolism of diethyl succinate was altered after exposing the animal to 3-nitropropionate, a known irreversible inhibitor of succinate dehydrogenase. On the basis of our results, hyperpolarized diethyl succinate allows for real-time in vivo MRI and MRS with a high signal-to-noise ratio and with visualization of multiple steps of the TCA cycle. Hyperpolarization of diethyl succinate and its in vivo applications may reveal an entirely new regime wherein the local status of TCA cycle metabolism is interrogated on the time scale of seconds to minutes with unprecedented chemical specificity and MR sensitivity

    Preclinical Testing of Metabolic Inhibitors with Erlotinib in Renal Medullary Carcinoma

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1099/thumbnail.jp

    Hypoxia inducible factor 1a in kidney cancer

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1120/thumbnail.jp

    Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    Get PDF
    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ?40?minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation

    Post-Acquisition Hyperpolarized 29Silicon MR Image Processing for Visualization of Colorectal Lesions Using a User-Friendly Graphical Interface

    Get PDF
    Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI

    Early Detection of Pancreatic Intraepithelial Neoplasias (PanINs) in Transgenic Mouse Model by Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy

    Get PDF
    While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.Fil: Dutta, Prasanta. University of Texas; Estados UnidosFil: Castro Pando, Susana. University of Texas; Estados UnidosFil: MascarĂł, Marilina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. University of Texas; Estados UnidosFil: Riquelme, Erick. University of Texas; Estados UnidosFil: Zoltan, Michelle. University of Texas; Estados UnidosFil: Zacharias, Niki M.. University of Texas; Estados UnidosFil: Gammon, Seth T.. University of Texas; Estados UnidosFil: Piwnica-Worms, David. University of Texas; Estados UnidosFil: Pagel, Mark D.. University of Texas; Estados UnidosFil: Sen, Subrata. University of Texas; Estados UnidosFil: Maitra, Anirban. University of Texas; Estados UnidosFil: Shams, Shayan. University of Texas; Estados UnidosFil: McAllister, Florencia. University of Texas; Estados UnidosFil: Bhattacharya, Pratip K.. University of Texas; Estados Unido

    Stem Cell Theory of Cancer: Rude Awakening or Bad Dream from Cancer Dormancy?

    No full text
    To be dormant or not depends on the origin and nature of both the cell and its niche. Similar to other cancer hallmarks, dormancy is ingrained with stemness, and stemness is embedded within dormancy. After all, cancer dormancy is dependent on multiple factors such as cell cycle arrest, metabolic inactivity, and the microenvironment. It is the net results and sum effects of a myriad of cellular interactions, interconnections, and interplays. When we unite all cancer networks and integrate all cancer hallmarks, we practice and preach a unified theory of cancer. From this perspective, we review cancer dormancy in the context of a stem cell theory of cancer. We revisit the seed and soil hypothesis of cancer. We reexamine its implications in both primary tumors and metastatic lesions. We reassess its roles in cell cycle arrest, metabolic inactivity, and stemness property. Cancer dormancy is particularly revealing when it informs us about the mysteries of late relapse, prolonged remission, and second malignancy. It is paradoxically rewarding when it delivers us the promises and power of cancer prevention and maintenance therapy in patient care

    Stem Cell Theory of Cancer: Implications for Drug Resistance and Chemosensitivity in Cancer Care

    No full text
    When it concerns cancer care and cancer therapy, drug resistance is more than an obstacle to successful treatment; it is a major cause of frustration in our attempts to optimize drug development versus therapy development. Importantly, overcoming the challenges of drug resistance may provide invaluable clues about the origin and nature of cancer. From this perspective, we discuss how chemoresistance and chemosensitivity in cancer therapy could be directly linked to the stem cell origin of cancer. A stem cell theory of cancer stipulates that both normal stem cells and cancer stem cells are similarly endowed with robust efflux pumps, potent antiapoptotic mechanisms, redundant DNA repair systems, and abundant antioxidation reserves. Cancer stem cells, like their normal stem cell counterparts, are equipped with the same drug resistance phenotypes (e.g., ABC transporters, anti-apoptotic pathways, and DNA repair mechanisms). Drug resistance, like other cancer hallmarks (e.g., tumor heterogeneity and cancer dormancy), could be intrinsically ingrained and innately embedded within malignancy. We elaborate that cellular context and the microenvironment may attenuate the effects of cancer treatments. We examine the role of circadian rhythms and the value of chronotherapy to maximize efficacy and minimize toxicity. We propose that a stem cell theory of drug resistance and drug sensitivity will ultimately empower us to enhance drug development and enable us to improve therapy development in patient care
    • …
    corecore