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Abstract: Medical imaging devices often use automated processing that creates and displays a
self-normalized image. When improperly executed, normalization can misrepresent information
or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence
of disease, or a negative finding when disease is present, can produce a detrimental experience for
the patient and diminish their health prospects and prognosis. In many clinical settings, a medical
technical specialist is trained to operate an imaging device without sufficient background information
or understanding of the fundamental theory and processes involved in image creation and signal
processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and
allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-
targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1
at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of
hyperpolarized silicon particles. Resulting images containing high background and artifacts were
then subjected to individualized image post-processing and comparative analysis. Post-acquisition
image processing allowed for co-registration of the targeted silicon signal with the anatomical proton
magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images,
acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice.
The method is expected to be generally useful for distinguishing true signal from background for
other cancer types, improving the reliability of diagnostic MRI.

Keywords: colorectal cancer; diagnostic imaging; hyperpolarization; image processing; GUI; MRI;
silicon particles

1. Introduction

A growing number of sophisticated medical imaging technologies are available for
cancer detection and diagnosis, but there remains a need for accurate, user-friendly analysis
of the images obtained. Colorectal cancer (CRC), the third leading cause of cancer-related
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death, has most deaths attributable to late diagnosis after the cancer has invaded the
intestinal wall and accessed the venous system [1–3]. Screening is of critical importance
because early-stage CRC is often asymptomatic, but if caught early, patients have much
higher survival rates [4,5]. The standard of care for screening is colonoscopy, but many
patients are averse to this procedure and certain patients, such as the elderly, are prone to
intestinal perforation and septic infection [6]. Visually assessed colonoscopy is prone to
human error because the diagnostician must detect any suspicious lesions by eye, with
certain types of polyps, such as flat and depressed polyps, being more difficult to see than
others. The location of some polyps, including when diverticulitis is present, can obscure
them from visual detection [7], leading to false negatives, allowing cancerous lesions
to progress without treatment. Other CRC detection techniques, including computed
tomography (CT)-based virtual colonoscopy, provide alternatives to colonoscopy, but suffer
from the possibility of false readings, ascribed to the user performing the reading more
so than the image capture [8]. More objective, effective and accessible image analysis
tools, as well as patient-friendly screening methods, can improve the accuracy of diagnosis,
eliminate false readings, and improve patient outcomes.

Magnetic resonance imaging (MRI) is noninvasive and, unlike CT, does not utilize
ionizing radiation. Hyperpolarization through dynamic nuclear polarization (DNP) is
an emerging method to increase the signal intensity and duration of magnetic resonance
(MR) active nuclei for medical imaging applications [9]. Hyperpolarization boosts the
measured signal in MRI by bypassing the room temperature thermodynamic distribution
of nuclear spin states, improving signal to noise and increasing sensitivity. Commonly
utilized isotopes for hyperpolarized MRI are 13C, 15N, and 129Xe [9]. MRI, used to image
human anatomy since the 1970s [10], utilizes the nuclear spin of hydrogen to acquire
anatomical information that is directly related to the variation of water content among
tissue types [10]. Acquisition time for MRI can be considerably long, but it provides a
means to perform whole body and deep tissue imaging without ionizing radiation in
vulnerable patients [11,12].

A promising new experimental screening method for polyp detection is targeted molec-
ular imaging with MRI, using hyperpolarized silicon nanoparticles that are introduced into
the colon and specifically bind to cancerous lesions where they can be detected. We previ-
ously described the use of antibody-functionalized hyperpolarized silicon to image CRC
lesions in a humanized mouse model, expressing mucin 1 (MUC1), a cancer biomarker [13].
Limitations of MR imaging analysis are that it (1) typically relies on commercial software
that allows for individual imaging adjustments but has limited capabilities for comparative
analysis; (2) is susceptible to thresholding difficulties that make it challenging to distin-
guish true signal from background, especially in an anatomically complex tissue, such as
the colon. This can lead to false results that negatively impact diagnosis and treatment
planning, including rescans to assess progression and/or recurrence. Hyperpolarized MR
imaging can be susceptible to artifacts, which can present differently depending on the
acquisition method, pulse sequences, gradients, MR coil and the extent of hyperpolariza-
tion buildup. Common artifacts associated with hyperpolarized MRI are motion, aliasing,
and radio frequency (RF) overflow artifacts [14–16]. Furthermore, due to experimental
set up, signal that is not of interest can contribute to the displayed image, skewing the
perceived intensity.

Here, we describe a user-friendly, post-acquisition image processing method that
considers relative signal intensity to provide an unbiased comparative analysis of MRI
imaging data. Using a set of independently acquired images from the humanized MUC1
mouse model, we could co-register the targeted silicon signal with the anatomical proton-
acquired image to locate the MUC1-positive lesions. Noise reduction and thresholding
methods were integrated into a graphical user interface (GUI) that processes imaging data
such that co-registration and comparative analysis can be readily accomplished on site.
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2. Materials and Methods
2.1. Mouse Model for Colorectal Cancer

All procedures involving animals were conducted using approved protocols and under
the supervision of the Institutional Animal Care and Use Committee at the University of
Texas M.D. Anderson Cancer Center (00000925-RN02, initially approved 31 January 2014,
MD Anderson IACUC). Previously, a mouse model was genetically engineered to produce
CRC tumors that express human MUC1 on their cell surfaces [17,18]. These mice were
obtained from The Jackson Laboratory (stock no. 024631) and crossed with Apcmin/+ mice
(The Jackson Laboratory, stock no. 002020) [19,20]. In order to generate the mice for this
study, female mice carrying hemizygous huMUC1 were mated with male Apcmin/+ mice
(heterozygous). MUC1 was identified using a specific, validated IgG1 antibody 214D4
(Sigma-Aldrich, St. Louis, MO, USA). Every two weeks, colonoscopy was performed
on the mice to monitor tumor growth as well as the relative location within the colon.
Tumors typically ranged in size between 5–10 mm. This protocol was performed on four
cohorts of mice with n = 3 for each group. The MUC1+ targeted group served as the
experimental group.

2.2. MR Imaging of CRC Tumors

After tumors were large enough to confirm their presence by colonoscopy, mice were
selected for imaging. Thirty minutes before imaging, mice were anesthetized, and an enema
was performed to evacuate the bowel for the unimpeded introduction of particles. In addi-
tion to the MUC1+ experimental group, there were three control groups: biological control,
chemical control, and pre-blocked MUC1+ mice. The biological control group produced
tumors that did not express human MUC1 and were imaged using 214D4 functionalized
nanoparticles. The chemical control group produced human MUC1 tumors and were
imaged using particles coated only with polyethylene glycol (PEG). The pre-blocked mice,
which produced tumors that expressed human MUC1, were given an enema and flushed
with fluorescent dye-labeled antibody at least 30 min prior to imaging. After allowing
the antibody to bind to the MUC1 present in the colon, particles were introduced, and
imaging took place as with the other cohorts. Fluorescent imaging before MRI confirmed
the successful binding of the blocking agent.

Mice were then placed in a 7 T preclinical scanner (Bruker, Billerica, MA, USA) using
a dual-tuned 1H/29Si coil for co-registered imaging. Hyperpolarized silicon particles
(Alfa Aesar, Haverhill, MA, USA) were then taken from the house made dynamic nuclear
polarizer (DNP) device described previously [21] and quickly warmed in hand before
dissolution in 300 µL of phosphate buffered saline (PBS). The solution of nanoparticles and
PBS were administered rectally through a modified syringe using a non-magnetic flexible
gavage needle. Immediately following administration of the nanoparticles, a 29Si MR
spectra (α = 10◦) was acquired to observe the initial 29Si signal level; this information was
used to determine the length of wait time prior to imaging (taking into account the particles’
expected T1). Typical wait times ranged from 5–20 min, following which 29Si imaging
utilized Rapid Acquisition with Refocused Echoes (RARE) sequences (α = 90◦). Before
moving the mouse, 1H anatomical imaging was acquired, also using a RARE sequence, for
co-localization of the silicon signal. All imaging was performed in the coronal plane.

2.3. Post-Mortem Analysis of CRC Tumors

After imaging was completed, the mouse was sacrificed, and the intestine resected to
remove the regions containing the tumors previously identified by digitally recorded micro-
colonoscopy. Tumors were clearly evident, extending into the colonic lumen above the
smooth mucosal surface at locations consistent with the imaging results. Residual particle
deposition throughout the tissue and concentrated at tumors was visually evaluated and
photographed. After this documentation, the excised colon was rinsed gently with buffer,
and the tissue was sectioned at each of the following locations for histology: tumor, healthy
colon, cecum. Hematoxylin and eosin staining was performed at the MD Anderson Division
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of Surgery Histology Core facility to identify MUC1-positive cancerous cells in the relevant
locations. Slides were scanned using an Aperio Digital Pathology Slide Scanner with a 20X
objective (Leica Biosystems, Buffalo Grove, IL, USA) and Aperio ImageScope for image
viewing. Slides for immunohistochemistry were fixed in 4% (w/v) paraformaldehyde
(PFA) in water. After 10 min, the PFA solution was removed, and cells were washed in
phosphate buffered saline (PBS) then permeabilized for 10 min with PBS containing 0.2%
(v/v) Triton-X. After blocking with 1% (w/v) BSA in PBS with 0.2% (v/v) Triton-X for 1 h at
room temperature, MUC1 positive tumors were visualized with MUC1 cytoplasmic tail
rabbit polyclonal antibody CT-1 at 1:25 dilution in 1% (w/v) BSA blocking buffer overnight
at 4 ◦C.

2.4. Post-Acquisition Image Processing and Registration

Post-acquisition image processing is required to co-register the targeted silicon signal
with the anatomical proton image. Both 1H and 29Si imaging were performed successively
without disturbing the mouse’s position in the MR scanner. Imaging was performed using a
dual-tuned 1H/29Si volume coil (Doty Scientific, Columbia, SC, USA), with the anatomical
image taken immediately after the acquisition of the 29Si image. Both images were acquired
using RARE sequences with a 64 mm2 field of view. Anatomical 1H images were acquired
with a 256 × 256 matrix, whereas 29Si images were acquired with a 32 × 32 matrix. Further,
29Si images were acquired with a smaller matrix size due to the time-sensitive nature and
spatial delocalization of the hyperpolarized signal. The silicon images are a single slice,
and the 1H images were acquired with 22 slices (0.75 mm thickness), the most anatomically
relevant being chosen for display.

Our algorithm was written to process the raw data files produced by the MRI, which
included any pre-processing done through the MRI manufacturer’s software such as
resizing. The data files are organized in a standard format. The code determines the
correct file based on user input before proceeding. To co-register the images, the original
k-space data set for silicon was zero-filled before Fourier transformation using ParaVision
(version 5.1) to match the 256 × 256 matrix of the anatomical image. The raw data for all
images were then imported to MATLAB (MathWorks, Natick, MA, USA) for reconstruction.
This imaging procedure was performed for each of the twelve studies to compare relative
signal magnitude through normalization. For each study, the silicon image was adjusted to
negate signal from leftover particles outside of the mouse (typically due to the injection
syringe remaining in the FOV). Each image intensity was divided by the silicon oil phantom
control signal recorded just prior to injection. This normalized the silicon intensity for
day-to-day fluctuations within the MR scanner.

2.5. Noise Reduction and Thresholding

To reduce noise, a threshold was applied to each 29Si image before processing together
for comparison. A 32 × 32 section was taken from each of the four corners of the image,
and all were averaged to establish the sample background noise statistics. After completing
this for each of the twelve studies, all silicon data were compared to determine the peak
signal intensity. Each image was then divided by the universal peak signal to normalize
the images as a set for display and comparison. Anatomical image data were imported
to MATLAB directly from ParaVision (Bruker, Billerica, MA, USA) using default settings.
The relevant slice for display was chosen and saturation of the top and bottom 1% of pixel
intensities was performed to enhance the contrast of the 1H images. The processed silicon
and hydrogen images were then co-registered using a composite overlay function from the
MATLAB image processing toolbox.

3. Results
3.1. Spurious Signal and Artifacts Distort Apparent Signal Intensity

We examined raw images from multiple mice to identify potential sources of spurious
signal or artifacts that could alter the interpretation of findings. In Figure 1a, the signal from



Diagnostics 2022, 12, 610 5 of 12

spilled particles (i) are located outside the mouse body. These particles are concentrated on
the gauze used to support the mouse body for imaging. The density of particles creates a
beacon of signal intensity that causes the internal targeted particle signal to appear weak.
The syringe is left in the mouse during imaging to reduce spillage. The particles remaining
in the syringe tip (panel b, ii), likewise, create a bright spot that misrepresents the signal
intensity of the region of interest in the mouse GI tract. Background noise (iii) can vary
between studies and apparent intensity is determined by overall signal intensity of the
study. An intense signal, as seen in (panel b, ii), can cause receiver overflow artifacts (panel
c, iv), due to an issue with digitalizing the analog signal.
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Figure 1. Spurious signal and artifacts distort apparent signal intensity. Three in vivo studies (a–c),
with overlaid illustration of mouse anatomy, show examples of issues and artifacts that misrepresent
relevant signal for targeted studies. (i) Spilled or leaked particles show concentrated signal outside
of the mouse. (ii) Leftover particles in syringe distort the signal intensity of targeted particles.
(iii) Background noise due to day-to-day variations with the MRI can distort expected signal-to-noise
ratios. (iv) RF Overflow artifacts can cause distortion in visualization of signal strength.

3.2. Comparing Signal Intensity across Studies

In Figure 2, the difference between relative signal strength before and after processing,
to account for maximum signal intensity, is shown. The left two images (Figure 2a) show
that comparison of signal intensity among self-optimized studies is difficult without ac-
counting for peak signal strength. The signal intensity is scaled based on the individual
study’s absolute maximum. This can be sufficient for determining variation in signal
strength for one image, but it does not intuitively portray variation among multiple images,
such as might be ideal for a longitudinal or comparative study, seeking to determine if
lesion progression has occurred. The two center images (Figure 2b) are the result of rescal-
ing displayed intensity, based on the maximum signal across all of studies of interest in a
comparison. The right images (Figure 2c) show the same studies after co-registration with
anatomical imaging. After processing is complete, the location and intensity of signal can
be evaluated among different studies, permitting more accurate image comparison.

3.3. Processing Artifacts Skew Displayed Intensity

Due to the low contrast of hyperpolarized silicon MR imaging, the automatically
displayed image, produced from built-in processing programs, can be noisy and difficult to
decipher. An example of specious signal displayed after erroneously processing images
can be seen in Figure 3. If background noise is determined by a constant across studies,
spurious signal will be shown, including false signal detected outside of the region where
particles have been introduced. It was determined empirically, by eye, that a threshold of
five times the mean background noise effectively eliminated the signal found outside of
the mouse torso, as determined from the anatomical images, which could, therefore, not be
attributed to the particles. After analyzing individual study background noise as a means
to determine thresholding, false noise was reduced successfully, as shown in Figure 3c,f.
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Figure 2. Comparing signal intensity across studies. (a) Two separate studies where maximum
signal intensity is displayed according to the highest value for each respective study. (b) The same
studies after post-processing to display maximum signal intensity normalized using the highest
signal measured across all studies after individual normalization of static background per study.
(c) The adjusted signal intensity after co-registration with anatomical hydrogen MRI.
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Figure 3. Processing artifacts skew displayed intensity. False signal in raw silicon images from
two mice (a,d), indicated by arrows superimposed on anatomical image (b,e), is still present after
using a standard threshold for noise reduction. Noise intensity may change between studies due to
day-to-day variation in the magnetic field. After normalization for noise levels present for individual
studies, the false signal is largely eliminated (c,f).
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3.4. Quantitative Analysis Shows Processed Signal Registers to Tumor Location

To quantify the differences seen in targeted vs. control studies and to show the
specificity of signal relative to tumor location, analysis using ImageJ was performed to
determine signal-to-noise (a) and contrast-to-noise ratios (b) (Figure 4). The mouse torso
ROI was used as control (c). Each tumor location (d) was indicated on an anatomical image
slice using information from the anatomical images, in conjunction with relative tumor
location, determined by prior colonoscopy. The exact area of tumor locations was shifted to
non-tumor regions (e) for comparative analysis. Signal-to-noise ratio was calculated using
the below equation

SNR = |µt − µb|/σb,

where µt is the mean intensity at the position of the tumors, µb is the mean intensity in a
region away from the tumors, and σb is the standard deviation in a region away from the
tumors, with all values calculated using a standard 7 mm diameter ROI, based on visual
determination. Contrast-to-noise ratio was calculated similarly as

CNR = |µt − µm|/σm,

where µm and σm are the mean and standard deviation, respectively, of the measured signal
in the mouse torso, excluding the tumor regions. The average SNR between targeted and
control groups had p < 0.001 and the average CNR between targeted and control groups
had p < 0.05, indicating strong supportive evidence for positive targeting ability. Statistical
analysis was performed with analysis of variance, using GraphPad Prism (San Diego, CA,
USA).
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Figure 4. Quantitative analysis shows processed signal registers to tumor location. Analysis of
SNR (a) and CNR (b) for four experimental groups using ROIs drawn for mouse body (c), tumor
locations (d), and non-tumor locations (e) of the same area as those from (d). Tumor locations were
determined with anatomical MRI and were confirmed following excision of the colonic tissue. n = 3
for each cohort. The star indicates the example study (c–e) data point after analysis [22].
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3.5. Post-Processing Reveals True Signal

Figure 5 shows the significance of post-processing on the displayed intensity of di-
agnostic imaging files. The raw image file before processing is noisy and signal inten-
sity is skewed by particles left in the syringe, as well as particles that have leaked post-
administration (Figure 5a). The post-processed image shows a meaningful signal after
denoising and disregarding the false signal from outside of the mouse (Figure 5b). The
location of tumors was correlated to areas of high signal post-processing. The background
signal was determined by averaging the signal intensity of the four corners, away from
the physical mouse location. The background for an individual study is determined before
any further processing occurs and the intensity value is maintained after the image is
visually altered for display purposes. However, there could have been signal outside of
the mouse that should be ignored due to setup or experimental physical limitations. To
avoid including erroneous signals, a quadrangle was drawn to indicate the ROI, though the
image could also be processed without specifying an ROI, without complication. The peak
intensity for a study in the user-defined ROI was determined and recorded for comparative
representation. The result after processing was an image largely clear of artifact, with signal
aligned with visually identified tumors.
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Figure 5. Post-processing reveals true signal. Mice were anesthetized prior to being imaged in a 7 T
small animal research MRI. Imaging was performed using coronal slices with the mouse in a supine
position. (a) Pre-processed silicon signal. Spurious signal obfuscates ability to detect true tumor
sites. (b) Post-processed image of the same study, co-registered with anatomical imaging. True signal
becomes evident after processing to reduce artifact-associated signal. Color bar in arbitrary units of
highest intensity.

4. Discussion
4.1. Distortion of Signal Due to Artifacts Compromises Meaningful Signal

Various sources can result in artifacts that distort the automatically displayed signal
image. Imaging methodology can produce spurious signals that misrepresent the true
targeted signal. Whether the result of MRI artifacts or experimental set up, false signal can
misrepresent signal intensity, leading to incorrect or misinformed diagnostic assessment.
One of the most common artifacts in hyperpolarized 29Si imaging is RF overflow. Despite
the long longitudinal relaxation time constant (T1) of silicon particles, the hyperpolarized
state is transient and relaxes to thermal Boltzmann equilibrium. As hyperpolarization can
lead to over 10,000-fold signal enhancement, the initial signal has a tendency to create RF
overflow artifacts that led to a non-uniform, washed-out or echo appearance in an image,
as seen in Figure 1c. This artifact occurs when the signal from the hyperpolarized silicon
particles, received from the amplifier, exceeds the dynamic range of the analog-to-digital
converter, causing clipping [23,24]. In conventional MRI, autoprescanning usually adjusts
the receiver gain to prevent this overflow artifact from occurring, which is not possible
in the case of hyperpolarized MRI. Through experience, we have learned to decrease the
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receiver gain manually in hyperpolarized MRI but overflow still happens often. As with
conventional MRI, this can be corrected by post-processing methods [25].

4.2. Cross-Study Importance of Evaluating Relative Signal Strength

A more quantitative method for assessing these images is by post-processing, using
cross-study signal intensity as a baseline for image comparison. Before relative intensity is
considered, the signal observed in these individual studies appears to have equal maximum
intensity, where they cannot be differentiated in a comparative study. After considering
and correcting for the maximum intensity across studies of interest, the relative signal
strength in each study becomes clear, as seen in Figure 2. The studies with previously high
signal appearance are reassessed to display a more accurate representation. This correction
is important, both for longitudinal studies, where a region of interest is reimaged over time,
and for dynamic studies, where changes in signal intensity within a region are determined
by imaging multiple times within a single imaging session. In addition, by setting the
threshold of background noise to a generic variable, user error is minimized.

Most high-risk individuals in need of noninvasive MRI-based colonoscopy will not
have one procedure in a lifetime, rather, they would need to be evaluated at periodic
intervals. When image processing is optimized on a case-by-case basis, at a single time
point, the ability to compare lesions is lost. The processed image will be self-normalized,
potentially resulting in variation in the signal intensity representation if backgrounds differ.
Because each image is analyzed and processed individually, comparative conclusions
cannot be drawn between images. This limitation is an issue for pre-clinical studies, where
comparison is useful to determine the significance of specificity against controls. This
shortcoming is also detrimental for situations where lesion size needs to be tracked over
time. An example of this would be to track treatment response, where imaging is done
periodically to determine the efficacy of a current treatment plan in reducing tumor size.

4.3. Artifact’s Impact on Displayed Signal

MRI artifacts are inherent in imaging methods with lower signal to noise. These
artifacts can be intensified based on the post-processing method. In preclinical studies
using mice, if the region of interest is not specified, a spurious signal localized outside of the
mouse torso may appear as significant. Additionally, MRI artifacts can further complicate
the visually displayed significance of the apparent signal. This issue can be addressed
by accounting for individual study noise background. By taking the average of the four
corners away from the region of interest, each study can be assessed based on the specific
noise during the time of acquisition.

4.4. Post-Processed Images Reveal Tumor Location

False positives in cancer diagnostic imaging can result in unnecessary treatments
and negative outcomes, in addition to avoidable financial and emotional burden for the
patient [26,27]. Additionally, a false positive result increases cost of care due to unnecessary
follow-up screening, which can be invasive [28]. False negatives can result in a delay of
appropriate treatment, leading to poorer prognosis. False positives and false negatives can
be the result of the diagnostic method, imaging sensitivity, or human error. The algorithm
described here decreases false diagnosis by using automated, unbiased post-processing.
The results of this methodology on the example studies showed zero instances of false
negatives and fewer instances of false positives, assessed as residual bright spots, when
compared to previously used methods in our laboratories. The difference in signal between
tumor location and background was significant between the targeted studies and the
controls. Statistical analysis supports the accuracy of this post-processing algorithm and
the capacity to reveal true signal, expected to reduce the number of false diagnoses.
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4.5. Algorithmic Processing Indicagtes Relative Signal Intensity across Dynamic Studies

The original processing code was written using MATLAB, which contains proprietary
tools and is less accessible due to cost and availability. MATLAB generally requires a
deeper level of coding background, hindering its usefulness as a tool in medical practice.
Python is free and open source, with a large online community. Source code can be hosted
and shared freely. Additionally, Python is becoming one of the most desired and widely
known coding languages [29]. This makes it an excellent choice for applications where
users may not have a strong background in coding. It can be utilized by anyone, regardless
of institution-provided subscription or access to funds.

The initial Python co-registration algorithm implementation required multiple script-
level modifications for proper execution. In order to make the image viewing simpler, a
Python Graphical User Interface (GUI) was written to encapsulate this dense back-end
software. Using PyQt, a port of the popular cross-platform Qt window development
suite, the resulting GUI requires only a simple Microsoft Excel configuration file. All other
user-interaction takes place through intuitive input formats, such as buttons and text-input
fields. This open access code can be used to process any imaging data where co-registration
and comparative analysis is desired. Because the code is open source, users can also make
modifications to fit their own specific research needs. This method of processing allows
the viewer to make qualitative comparative analysis of time dynamic studies, as well as
longitudinal studies. This method is almost fully automated and allows the user to restrict
the region being analyzed if desired. Full documentation and instructions can be found at
https://github.com/farachcarsonwulab (accessed on 22 April 2021).

5. Conclusions

Noise and other artifacts complicate the readability of MR images for clinicians on
site. The automatically displayed image cannot be edited beyond superficial individual
adjustments, such as windowing and leveling. This results in images with varying intensity
that may be affected by signal sources outside of the main region of investigation. How-
ever, the processing algorithm presented here permits users to determine the appropriate
background removal, on a case-by-case basis, without user interference for individual
assessment. Background noise can be determined based on a universal SNR threshold, set
by the user to accommodate all images of interest, to elucidate the relevant signal of inter-
est. This algorithm aims to decrease the number of false diagnoses, while increasing the
accessibility of code modification for application-specific post-processing customization.
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