14 research outputs found
Open Domain Knowledge Extraction for Knowledge Graphs
The quality of a knowledge graph directly impacts the quality of downstream
applications (e.g. the number of answerable questions using the graph). One
ongoing challenge when building a knowledge graph is to ensure completeness and
freshness of the graph's entities and facts. In this paper, we introduce ODKE,
a scalable and extensible framework that sources high-quality entities and
facts from open web at scale. ODKE utilizes a wide range of extraction models
and supports both streaming and batch processing at different latency. We
reflect on the challenges and design decisions made and share lessons learned
when building and deploying ODKE to grow an industry-scale open domain
knowledge graph.Comment: 7 pages, 7 figures, 5 tables, preprint technical report, no code or
data is release
Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts
Objective: The abundance of text available in social media and health related forums along with the rich expression of public opinion have recently attracted the interest of the public health community to use these sources for pharmacovigilance. Based on the intuition that patients post about Adverse Drug Reactions (ADRs) expressing negative sentiments, we investigate the effect of sentiment analysis features in locating ADR mentions. Methods: We enrich the feature space of a state-of-the-art ADR identification method with sentiment analysis features. Using a corpus of posts from the DailyStrength forum and tweets annotated for ADR and indication mentions, we evaluate the extent to which sentiment analysis features help in locating ADR mentions and distinguishing them from indication mentions. Results: Evaluation results show that sentiment analysis features marginally improve ADR identification in tweets and health related forum posts. Adding sentiment analysis features achieved a statistically significant F-measure increase from 72.14% to 73.22% in the Twitter part of an existing corpus using its original train/test split. Using stratified 10 10-fold cross-validation, statistically significant F-measure increases were shown in the DailyStrength part of the corpus, from 79.57% to 80.14%, and in the Twitter part of the corpus, from 66.91% to 69.16%. Moreover, sentiment analysis features are shown to reduce the number of ADRs being recognized as indications. Conclusion: This study shows that adding sentiment analysis features can marginally improve the performance of even a state-of-the-art ADR identification method. This improvement can be of use to pharmacovigilance practice, due to the rapidly increasing popularity of social media and health forums
News Mining And Tecnical Analysis For Stock Market Prediction
In this research we proposed and evaluated a new method in stock market price trend. We trained a classifier which is able to classify any incoming news into three final categories based on their short term impact on market trend. In order to analyze the news content, we proposed a new method in text classification which uses semantic relations between news article words
Social media mining for public health monitoring and surveillance
This paper describes topics pertaining to the session, “Social Media Mining for Public Health Monitoring and Surveillance,” at the Pacific Symposium on Biocomputing (PSB) 2016. In addition to summarizing the content of the session, this paper also surveys recent research on using social media data to study public health. The survey is organized into sections describing recent progress in public health problems, computational methods, and social implications
Utilizing social media data for pharmacovigilance: A review
Objective: Automatic monitoring of Adverse Drug Reactions (ADRs), defined as adverse patient outcomes caused by medications, is a challenging research problem that is currently receiving significant attention from the medical informatics community. In recent years, user-posted data on social media, primarily due to its sheer volume, has become a useful resource for ADR monitoring. Research using social media data has progressed using various data sources and techniques, making it difficult to compare distinct systems and their performances. In this paper, we perform a methodical review to characterize the different approaches to ADR detection/extraction from social media, and their applicability to pharmacovigilance. In addition, we present a potential systematic pathway to ADR monitoring from social media. Methods: We identified studies describing approaches for ADR detection from social media from the Medline, Embase, Scopus and Web of Science databases, and the Google Scholar search engine. Studies that met our inclusion criteria were those that attempted to extract ADR information posted by users on any publicly available social media platform. We categorized the studies according to different characteristics such as primary ADR detection approach, size of corpus, data source(s), availability, and evaluation criteria. Results: Twenty-two studies met our inclusion criteria, with fifteen (68%) published within the last two years. However, publicly available annotated data is still scarce, and we found only six studies that made the annotations used publicly available, making system performance comparisons difficult. In terms of algorithms, supervised classification techniques to detect posts containing ADR mentions, and lexicon-based approaches for extraction of ADR mentions from texts have been the most popular. Conclusion: Our review suggests that interest in the utilization of the vast amounts of available social media data for ADR monitoring is increasing. In terms of sources, both health-related and general social media data have been used for ADR detection-while health-related sources tend to contain higher proportions of relevant data, the volume of data from general social media websites is significantly higher. There is still very limited amount of annotated data publicly available , and, as indicated by the promising results obtained by recent supervised learning approaches, there is a strong need to make such data available to the research community