164 research outputs found
Theory for polymer coils with necklaces of micelles
If many micelles adsorb onto the same polymer molecule then they are said to
form a necklace. A minimal model of such a necklace is proposed and shown to be
almost equivalent to a 1-dimensional fluid with nearest-neighbour interactions.
The thermodynamic functions of this fluid are obtained and then used to predict
the change in the critical micellar concentration of the surfactant in the
presence of the polymer. If the amount of polymer is not too large there are
two critical micellar concentrations, one for micelles in necklaces and one for
free micelles.Comment: 12 pages, 5 figure
Manipulation of the follicular phase: Uterodomes and pregnancy - is there a correlation?
BACKGROUND: Manipulation of the follicular phase uterine epithelium in women undergoing infertility treatment, has not generally shown differing morphological effects on uterine epithelial characteristics using Scanning Electron Microscopy (SEM) and resultant pregnancy rates have remained suboptimal utilising these manipulations. The present study observed manipulation of the proliferative epithelium, with either 7 or 14 days of sequential oestrogen (E) therapy followed by progesterone (P) and assessed the appearance of pinopods (now called uterodomes) for their usefulness as potential implantation markers in seven women who subsequently became pregnant. Three endometrial biopsies per patient were taken during consecutive cycles: day 19 of a natural cycle - (group 1), days 11/12 of a second cycle after 7 days E then P - (group 2), and days 19/22 of a third cycle after 14 days E then P - (group 3). Embryo transfer (ET) was performed in a subsequent long treatment cycle (as per Group 3). RESULTS: Seven pregnancies resulted in seven viable births including one twins and one miscarriage. Analysis of the individual regimes showed 5 days of P treatment to have a higher correlation for uterodomes in all 3 cycles observed individually. It was also observed that all 7 women demonstrated the appearance of uterodomes in at least one of their cycles. CONCLUSIONS: We conclude that manipulation of the follicular phase by shortening the period of E exposure to 7 days, does not compromise uterine epithelial morphology and we add weight to the conclusion that uterodomes indicate a receptive endometrium for implantation
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
The spin precession frequency of muons stored in the storage ring has
been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT
violation signatures were searched for: a nonzero
(=); and a sidereal variation of
. No significant effect is found, and the following
limits on the standard-model extension parameters are obtained: GeV; GeV; and the 95% confidence level limits
GeV and
GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to
answer the referees suggestion
The Muon Anomalous Magnetic Moment and the Standard Model
The muon anomalous magnetic moment measurement, when compared with theory,
can be used to test many extensions to the standard model. The most recent
measurement made by the Brookhaven E821 Collaboration reduces the uncertainty
on the world average of a_mu to 0.7 ppm, comparable in precision to theory.
This paper describes the experiment and the current theoretical efforts to
establish a correct standard model reference value for the muon anomaly.Comment: Plenary Talk; PANIC'02 XVI Particles and Nuclear International
Conference, Osaka, Japan; Sept. 30 - Oct. 4, 2002; Report describes the
published 0.7 ppm result and updates the theory statu
An Improved Limit on the Muon Electric Dipole Moment
Three independent searches for an electric dipole moment (EDM) of the
positive and negative muons have been performed, using spin precession data
from the muon g-2 storage ring at Brookhaven National Laboratory. Details on
the experimental apparatus and the three analyses are presented. Since the
individual results on the positive and negative muon, as well as the combined
result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon
EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5
improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table
Search for Lorentz and CPT Violation Effects in Muon Spin Precession
The spin precession frequency of muons stored in the storage ring has
been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT
violation signatures were searched for: a nonzero
(=); and a sidereal variation of
. No significant effect is found, and the following
limits on the standard-model extension parameters are obtained: GeV; GeV; and the 95% confidence level limits
GeV and
GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to
answer the referees suggestion
Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL
We present the final report from a series of precision measurements of the
muon anomalous magnetic moment, a_mu = (g-2)/2. The details of the experimental
method, apparatus, data taking, and analysis are summarized. Data obtained at
Brookhaven National Laboratory, using nearly equal samples of positive and
negative muons, were used to deduce a_mu(Expt) = 11 659 208.0(5.4)(3.3) x
10^-10, where the statistical and systematic uncertainties are given,
respectively. The combined uncertainty of 0.54 ppm represents a 14-fold
improvement compared to previous measurements at CERN. The standard model value
for a_mu includes contributions from virtual QED, weak, and hadronic processes.
While the QED processes account for most of the anomaly, the largest
theoretical uncertainty, ~0.55 ppm, is associated with first-order hadronic
vacuum polarization. Present standard model evaluations, based on e+e- hadronic
cross sections, lie 2.2 - 2.7 standard deviations below the experimental
result.Comment: Summary paper of E821 Collaboration measurements of the muon
anomalous magnetic moment, each reported earlier in Letters or Brief Reports;
96 pages, 41 figures, 16 tables. Revised version submitted to PR
ACTiCLOUD: Enabling the Next Generation of Cloud Applications
Despite their proliferation as a dominant computing paradigm, cloud computing systems lack effective mechanisms to manage their vast amounts of resources efficiently. Resources are stranded and fragmented, ultimately limiting cloud systems' applicability to large classes of critical applications that pose non-moderate resource demands. Eliminating current technological barriers of actual fluidity and scalability of cloud resources is essential to strengthen cloud computing's role as a critical cornerstone for the digital economy. ACTiCLOUD proposes a novel cloud architecture that breaks the existing scale-up and share-nothing barriers and enables the holistic management of physical resources both at the local cloud site and at distributed levels. Specifically, it makes advancements in the cloud resource management stacks by extending state-of-the-art hypervisor technology beyond the physical server boundary and localized cloud management system to provide a holistic resource management within a rack, within a site, and across distributed cloud sites. On top of this, ACTiCLOUD will adapt and optimize system libraries and runtimes (e.g., JVM) as well as ACTiCLOUD-native applications, which are extremely demanding, and critical classes of applications that currently face severe difficulties in matching their resource requirements to state-of-the-art cloud offerings
Vitamin-V: Virtual Environment and Tool-boxing for Trustworthy Development of RISC-V based Cloud Services
Vitamin-V is a 2023-2025 Horizon Europe project that aims to develop a complete RISC-V open-source software stack for cloud services with comparable performance to the cloud-dominant x86 counterpart and a powerful virtual execution environment for software development, validation, verification, and test that considers the relevant RISC-V ISA extensions for cloud deployment
News from the Muon (g-2) Experiment at BNL
The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has
been measured at the Brookhaven Alternating Gradient Synchrotron with an
uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees
well with previous measurements. Standard Model evaluations currently differ
from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz,
Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc.
Suppl.); 5 pages, 3 figure
- …