13 research outputs found

    Pharmacokinetics of favipiravir during continuous venovenous haemofiltration in a critically ill patient with influenza.

    No full text
    Favipiravir is a novel antiviral drug approved for influenza treatment in Japan. Little is known about favipiravir pharmacokinetics in critically ill patients. Here, we report a patient with influenza treated with favipiravir and undergoing continuous venovenous hemofiltration (CVVH) on the Intensive Care Unit of a tertiary hospital in the Netherlands. Pharmacokinetic analyses showed increased clearance and decreased plasma levels compared to healthy volunteers. CVVH has no clinically relevant contribution to total clearance. Despite susceptibility to favipiravir, the influenza virus was not cleared. A multi-disciplinary approach is needed to ensure optimal favipiravir treatment in critically ill patients

    Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates

    No full text
    Background: Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates. Objective: The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated. Methods: Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling. Results: Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62–1.09) and volume of distribution (Vd) was 2.43 L (95% CI 2.25–2.63). For metabolite oxypurinol, CL and Vd relative to a formation fraction (fm) were 0.26 L/h (95% CI 0.23–0.3) and 11 L (95% CI 9.9–12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31–0.42). Conclusion: The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH.Peer reviewe

    A simple extemporaneous oral suspension of aprepitant yields sufficient pharmacokinetic exposure in children

    Get PDF
    Introduction: Aprepitant is used for the treatment of chemotherapy induced nausea and vomiting. A liquid formulation is needed for treatment of young children. However, the commercial (powder for) suspension was not available worldwide for a prolonged period of time and, therefore, a 10 mg/mL aprepitant oral suspension was extemporarily prepared to prevent suboptimal antiemetic treatment. The current pharmacokinetic study was developed to investigate whether this extemporaneous oral suspension offers an appropriate treatment option.Methods: From 49 pediatric patients (0.7–17.9 years) 235 plasma concentrations were collected. Patients were either treated with our extemporaneous oral suspension (n = 26; 53%), commercially available capsules (n = 18; 37%), or the intravenous prodrug formulation of aprepitant (fosaprepitant, n = 5; 10%). Pharmacokinetic analyses were performed using nonlinear mixed effects modelling.Results: A one-compartment model adequately described the pharmacokinetics of aprepitant in children. The bioavailability of the extemporaneous oral suspension was not significantly different to that of the capsules (P = 0.26). The observed bioavailability throughout the total population was 83% (95% CI 69%-97%). The absorption of the extemporaneous oral suspension was 39.4% (95%CI 19.5–57.4%) faster than that of capsules (mean absorption time of 1.78 h (95%CI 1.32–2.35), but was comparable to that of the commercial oral suspension. The median area under the curve after (fos)aprepitant was 22.2 mg/L*h (range 8.9–50.3 mg/L*h) on day 1.Conclusion: Our extemporaneous oral suspension is an adequate alternative for the commercially (un)available oral suspension in young children. An adequate exposure to aprepitant in children was yielded and the bioavailability of the extemporaneous suspension was comparable to capsules.</p

    Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates

    Get PDF
    BACKGROUND Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates. OBJECTIVE The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated. METHODS Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling. RESULTS Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62-1.09) and volume of distribution (Vd_{d}) was 2.43 L (95% CI 2.25-2.63). For metabolite oxypurinol, CL and Vd_{d} relative to a formation fraction (fm_{m}) were 0.26 L/h (95% CI 0.23-0.3) and 11 L (95% CI 9.9-12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31-0.42). CONCLUSION The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH

    Development of a Therapeutic Drug Monitoring Strategy for the Optimization of Vincristine Treatment in Pediatric Oncology Populations in Africa

    No full text
    Background:Recent studies have reported ethnic differences in vincristine exposure and outcomes such as toxicity. This resulted in the hypothesis of subtherapeutic dosing in African children. To optimize individual treatment, a strategy to identify subtherapeutic exposure using therapeutic drug monitoring is essential. The aim of the current study was to develop a strategy for therapeutic drug monitoring of vincristine in African children to meet the following criteria: (1) identify patients with low vincristine exposure with sufficient sensitivity (>70%), (2) determine vincristine exposure with a limited sampling strategy design of 3 samples, and (3) allow all samples to be collected within 4 hours after administration.Methods:An in silico simulation study was performed using a previously described population pharmacokinetic model and real-life demographic dataset of Kenyan and Malawian pediatric oncology patients. Two different therapeutic drug monitoring strategies were evaluated: (1) Bayesian approach and (2) pharmacometric nomogram. The sampling design was optimized using the constraints described above. Sensitivity analysis was performed to investigate the influence of missing samples, erroneous sampling times, and different boundaries on the nomogram weight bands.Results:With the Bayesian approach, 43.3% of the estimated individual exposure values had a prediction error of ≥20% owing to extremely high shrinkage. The Bayesian approach did not improve with alternative sampling designs within sampling constraints. However, the pharmacometric nomogram could identify patients with low vincristine exposure with a sensitivity, specificity, and accuracy of 75.1%, 76.4%, and 75.9%, respectively. The pharmacometric nomogram performed similarly for different weight bands.Conclusions:The pharmacometric nomogram was able to identify patients with low vincristine exposure with high sensitivity, with 3 blood samples collected at 1, 1.5, and 4 hours after administration. Missing samples should be avoided, and the 3 scheduled samples should be collected within 15, 5, and 15 minutes of 1, 1.5, and 4 hours after administration, respectively

    Clinical pharmacology of cytotoxic drugs in neonates and infants: Providing evidence-based dosing guidance

    Get PDF
    Cancer in neonates and infants is a rare but challenging entity. Treatment is complicated by marked physiological changes during the first year of life, excess rates of toxicity, mortality, and late effects. Dose optimisation of chemotherapeutics may be an important step to improving outcomes. Body size–based dosing is used for most anticancer drugs used in infants. However, dose regimens are generally not evidence based, and dosing strategies are frequently inconsistent between tumour types and treatment protocols. In this review, we collate available pharmacological evidence supporting dosing regimens in infants for a wide range of cytotoxic drugs. A systematic review was conducted, and available data ranked by a level of evidence (1–5) and a grade of recommendation (A–D) provided on a consensus basis, with recommended dosing approaches indicated as appropriate. For 9 of 29 drugs (busulfan, carboplatin, cyclophosphamide, daunorubicin, etoposide, fludarabine, isotretinoin, melphalan and vincristine), grade A was scored, indicating sufficient pharmacological evidence to recommend a dosing algorithm for infants. For busulfan and carboplatin, sufficient data were available to recommend therapeutic drug monitoring in infants. For eight drugs (actinomycin D, blinatumomab, dinutuximab, doxorubicin, mercaptopurine, pegaspargase, thioguanine and topotecan), some pharmacological evidence was available to guide dosing (graded as B). For the remaining drugs, including commonly used agents such as cisplatin, cytarabine, ifosfamide, and methotrexate, pharmacological evidence for dosing in infants was limited or non-existent: grades C and D were scored for 10 and 2 drugs, respectively. The review provides clinically relevant evidence-based dosing guidance for cytotoxic drugs in neonates and infants

    Overestimation of the effect of (fos)aprepitant on intravenous dexamethasone pharmacokinetics requires adaptation of the guidelines for children with chemotherapy-induced nausea and vomiting

    Get PDF
    Purpose: Chemotherapy-induced nausea and vomiting (CINV) are common side effects in pediatric oncology treatment. Besides 5-HT3-antagonists, both dexamethasone and aprepitant are cornerstone drugs in controlling these side effects. Based on results of adult studies, the dexamethasone dose is reduced by 50% when combined with aprepitant, because of a drug-drug interaction, even though data on the interaction in children is lacking. The current study was developed to investigate the effect of aprepitant on dexamethasone clearance (CL) in children, in order to assess if dexamethasone dose reduction for concomitant use of aprepitant is appropriate in the current antiemetic regimen. Methods: In total, 65 children (0.6–17.9 years), receiving intravenous or oral antiemetic therapy (dexamethasone ± aprepitant) as standard of care, were included. 305 dexamethasone plasma concentrations were determined using LC–MS/MS. An integrated dexamethasone and aprepitant pharmacokinetic model was developed using non-linear mixed effects modelling in order to investigate the effect of aprepitant administration on dexamethasone CL. Results: In this population, dexamethasone CL in patients with concomitant administration of aprepitant was reduced by approximately 30% of the uninhibited CL (23.3 L/h (95% confidence interval 20.4–26.0)). This result is not consistent with the results of adult studies (50% reduction). This difference was not age dependent, but might be related to the route of administration of dexamethasone. Future studies are needed to assess the difference in oral/intravenous dexamethasone. Conclusion: When dexamethasone is given intravenously as a component of triple therapy to prevent CINV in children, we advise to reduce the dexamethasone dose by 30% instead of 50%

    Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates

    No full text
    Background: Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates. Objective: The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated. Methods: Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling. Results: Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62–1.09) and volume of distribution (Vd) was 2.43 L (95% CI 2.25–2.63). For metabolite oxypurinol, CL and Vd relative to a formation fraction (fm) were 0.26 L/h (95% CI 0.23–0.3) and 11 L (95% CI 9.9–12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31–0.42). Conclusion: The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH

    A Population Pharmacokinetic Modelling Approach to Unravel the Complex Pharmacokinetics of Vincristine in Children

    Get PDF
    Background Vincristine, a chemotherapeutic agent that extensively binds to beta-tubulin, is commonly dosed at 1.4-2.0 mg/m(2) capped at 2 mg. For infants, doses vary from 0.025-0.05 mg/kg or 50-80% of the mg/m(2) dose. However, evidence for lower doses in infants compared to older children is lacking. This study was conducted to unravel the complex pharmacokinetics of vincristine, including the effects of age, to assist optimal dosing in this population. Methods 206 patients (0.04-33.9 years; 25 patients < 1 years), receiving vincristine, with 1297 plasma concentrations were included. Semi-mechanistic population pharmacokinetic analyses were performed using non-linear mixed effects modelling. Results A three-compartment model, with one saturable compartment resembling saturable binding to beta-tubulin and thus, saturable distribution, best described vincristine pharmacokinetics. Body weight and age were covariates significantly influencing the maximal binding capacity to beta-tubulin, which increased with increasing body weight and decreased with increasing age. Vincristine clearance (CL) was estimated as 30.6 L/h (95% confidence interval (CI) 27.6-33.0), intercompartmental CL (Q) as 63.2 L/h (95%CI 57.2-70.1), volume of distribution of the central compartment as 5.39 L (95%CI 4.23-6.46) and of the peripheral compartment as 400 L (95%CI 357-463) (all parameters correspond to a patient of 70 kg). The maximal binding capacity was 0.525 mg (95%CI 0.479-0.602) (for an 18 year old patient of 70 kg), with a high association rate constant, fixed at 1300 /h and a dissociation constant of 11.5 /h. Interpretation A decrease of vincristine beta-tubulin binding capacity with increasing age suggests that young children tolerate higher doses of vincristine
    corecore