9 research outputs found

    Transmission and prenatal diagnosis of the T9176C mitochondrial DNA mutation.

    No full text
    Contains fulltext : 49225.pdf (publisher's version ) (Closed access)A family presented with three affected children with Leigh syndrome, a progressive neurodegenerative disorder. Analysis of the OXPHOS complexes in muscle of two affected patients showed an increase in activity of pyruvate dehydrogenase and a decrease of complex V activity. Mutation analysis revealed the T9176C mutation in the mtATPase 6 gene (OMIM 516060) and the mutation load was above 90% in the patients. Unaffected maternal relatives were tested for carrier-ship and one of them, with a mutation load of 55% in blood, was pregnant with her first child. The possibility of prenatal diagnosis was evaluated. The main problem was the lack of data on genotype-phenotype associations for the T9176C mutation and on variation of the mutation percentage in tissues and in time. Therefore, multiple tissues of affected and unaffected carriers were analysed. Eventually, prenatal diagnosis was offered with understanding by the couple that there could be considerable uncertainty in the interpretation of the results. Prenatal diagnosis was carried out twice on cultured and uncultured chorion villi and amniotic fluid cells. The result was a mutation percentage just below the assumed threshold of expression (90%). The couple decided to continue the pregnancy and an apparently healthy child was born with an as yet unclear prognosis. This is the first prenatal diagnosis for a carrier of the T9176C mutation. Prenatal diagnosis for this mutation is technically reliable, but the prognostic predictions are not straightforward

    Oxidative stress and DNA damage responses in rat and mouse lung to inhaled carbon nanoparticles

    No full text
    Abstract We have investigated whether short-term nose-only inhalation exposure to electric spark discharge-generated carbon nanoparticles ( approximately 60 nm) causes oxidative stress and DNA damage responses in the lungs of rats (152 mug/m(3); 4 h) and mice (142 mug/m(3); 4 h, or three times 4 h). In both species, no pulmonary inflammation and toxicity were detected by bronchoalveolar lavage or mRNA expression analyses. Oxidative DNA damage (measured by fpg-comet assay), was also not increased in mouse whole lung tissue or isolated lung epithelial cells from rat. In addition, the mRNA expressions of the DNA base excision repair genes OGG1, DNA Polbeta and XRCC1 were not altered. However, in the lung epithelial cells isolated from the nanoparticle-exposed rats a small but significant increase in APE-1 mRNA expression was measured. Thus, short-term inhalation of carbon nanoparticles under the applied exposure regimen, does not cause oxidative stress and DNA damage in the lungs of healthy mice and rats

    Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    Get PDF
    Background: Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results: We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain. Conclusion: Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics

    Intricate Regulation of Phosphoenolpyruvate Carboxykinase (PEPCK) Isoforms in Normal Physiology and Disease

    No full text
    corecore