548 research outputs found

    Lie Superalgebra Stability and Branes

    Full text link
    The algebra of the generators of translations in superspace is unstable, in the sense that infinitesimal perturbations of its structure constants lead to non-isomorphic algebras. We show how superspace extensions remedy this situation (after arguing that remedy is indeed needed) and review the benefits reaped in the description of branes of all kinds in the presence of the extra dimensions.Comment: Talk given at the conference ``Brane New World and Non-commutative Geometry'', held in Torino, October 2000. To appear in the proceedings by World Scientific. 10 pages, 1 figur

    Do Killing-Yano tensors form a Lie Algebra?

    Get PDF
    Killing-Yano tensors are natural generalizations of Killing vectors. We investigate whether Killing-Yano tensors form a graded Lie algebra with respect to the Schouten-Nijenhuis bracket. We find that this proposition does not hold in general, but that it does hold for constant curvature spacetimes. We also show that Minkowski and (anti)-deSitter spacetimes have the maximal number of Killing-Yano tensors of each rank and that the algebras of these tensors under the SN bracket are relatively simple extensions of the Poincare and (A)dS symmetry algebras.Comment: 17 page

    Protein-templated reactions using DNA-antibody conjugates

    Get PDF
    DNA-templated chemical reactions have found wide applications in drug discovery, programmed multistep synthesis, nucleic acid detection, and targeted drug delivery. The control of these reactions has, however, been limited to nucleic acid hybridization as a means to direct the proximity between reactants. In this work a system capable of translating protein-protein binding events into a DNA-templated reaction which leads to the covalent formation of a product is introduced. Protein-templated reactions by employing two DNA-antibody conjugates that are both able to recognize the same target protein and to colocalize a pair of reactant DNA strands able to undergo a click reaction are achieved. Two individual systems, each responsive to human serum albumin (HSA) and human IgG, are engineered and it is demonstrated that, while no reaction occurs in the absence of proteins, both protein-templated reactions can occur simultaneously in the same solution without any inter-system crosstalk

    Double bracket dissipation in kinetic theory for particles with anisotropic interactions

    Full text link
    We derive equations of motion for the dynamics of anisotropic particles directly from the dissipative Vlasov kinetic equations, with the dissipation given by the double bracket approach (Double Bracket Vlasov, or DBV). The moments of the DBV equation lead to a nonlocal form of Darcy's law for the mass density. Next, kinetic equations for particles with anisotropic interaction are considered and also cast into the DBV form. The moment dynamics for these double bracket kinetic equations is expressed as Lie-Darcy continuum equations for densities of mass and orientation. We also show how to obtain a Smoluchowski model from a cold plasma-like moment closure of DBV. Thus, the double bracket kinetic framework serves as a unifying method for deriving different types of dynamics, from density--orientation to Smoluchowski equations. Extensions for more general physical systems are also discussed.Comment: 19 pages; no figures. Submitted to Proc. Roy. Soc.

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page

    Classical field theory on Lie algebroids: Variational aspects

    Full text link
    The variational formalism for classical field theories is extended to the setting of Lie algebroids. Given a Lagrangian function we study the problem of finding critical points of the action functional when we restrict the fields to be morphisms of Lie algebroids. In addition to the standard case, our formalism includes as particular examples the case of systems with symmetry (covariant Euler-Poincare and Lagrange Poincare cases), Sigma models or Chern-Simons theories.Comment: Talk deliverd at the 9th International Conference on Differential Geometry and its Applications, Prague, September 2004. References adde

    Counting Complex Disordered States by Efficient Pattern Matching: Chromatic Polynomials and Potts Partition Functions

    Full text link
    Counting problems, determining the number of possible states of a large system under certain constraints, play an important role in many areas of science. They naturally arise for complex disordered systems in physics and chemistry, in mathematical graph theory, and in computer science. Counting problems, however, are among the hardest problems to access computationally. Here, we suggest a novel method to access a benchmark counting problem, finding chromatic polynomials of graphs. We develop a vertex-oriented symbolic pattern matching algorithm that exploits the equivalence between the chromatic polynomial and the zero-temperature partition function of the Potts antiferromagnet on the same graph. Implementing this bottom-up algorithm using appropriate computer algebra, the new method outperforms standard top-down methods by several orders of magnitude, already for moderately sized graphs. As a first application, we compute chromatic polynomials of samples of the simple cubic lattice, for the first time computationally accessing three-dimensional lattices of physical relevance. The method offers straightforward generalizations to several other counting problems.Comment: 7 pages, 4 figure

    Generalized Jacobi structures

    Get PDF
    Jacobi brackets (a generalization of standard Poisson brackets in which Leibniz's rule is replaced by a weaker condition) are extended to brackets involving an arbitrary (even) number of functions. This new structure includes, as a particular case, the recently introduced generalized Poisson structures. The linear case on simple group manifolds is also studied and non-trivial examples (different from those coming from generalized Poisson structures) of this new construction are found by using the cohomology ring of the given group.Comment: Latex2e file. 11 pages. To appear in J. Phys.

    Bose-Einstein Correlations of Pion Wavepackets

    Get PDF
    A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the two-particle correlation function are discussed. A physical interpretation of the chaoticity lambda as localizat of the pions in the source is presented. Two techniques to generate test-particles, which satisfy the probability densities of the wavepacket state, are studied: 1. A Monte Carlo procedure in momentum space based on the standard Metropolis technique. 2. A molecular dynamic procedure using Bohm's quantum theory of motion. In order to reduce the numerical complexity, the separation of the wavefunction into momentum space clusters is discussed. In this context th influence of an unauthorized factorization of the state, i. e. the omissio of interference terms, is investigated. It is shown that the correlation radius remains almost uneffected, but the chaoticity parameter decreases substantially. A similar effect is observed in systems with high multiplic where the omission of higher order corrections in the analysis of two-part correlations causes a reduction of the chaoticity and the radius. The approximative treatment of the Coulomb interaction between pions and source is investigated. The results suggest that Coulomb effects on the co radii are not symmetric for pion pairs of different charges. For negative the radius, integrated over the whole momentum spectrum, increases substan while for positive pions the radius remains almost unchanged.Comment: 15 pages, 8 figures, 0.8 Mb, uses ljour2-macro, Submitted to Z. Phys. A (1997

    Manin products, Koszul duality, Loday algebras and Deligne conjecture

    Full text link
    In this article we give a conceptual definition of Manin products in any category endowed with two coherent monoidal products. This construction can be applied to associative algebras, non-symmetric operads, operads, colored operads, and properads presented by generators and relations. These two products, called black and white, are dual to each other under Koszul duality functor. We study their properties and compute several examples of black and white products for operads. These products allow us to define natural operations on the chain complex defining cohomology theories. With these operations, we are able to prove that Deligne's conjecture holds for a general class of operads and is not specific to the case of associative algebras. Finally, we prove generalized versions of a few conjectures raised by M. Aguiar and J.-L. Loday related to the Koszul property of operads defined by black products. These operads provide infinitely many examples for this generalized Deligne's conjecture.Comment: Final version, a few references adde
    • …
    corecore