5 research outputs found

    Bioinertization of NanoLC/MS/MS Systems by Depleting Metal Ions From the Mobile Phases for Phosphoproteomics

    Get PDF
    We have successfully developed a bioinertized nanoflow liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS) system for the highly sensitive analysis of phosphopeptides by depleting metal ions from the mobile phase. We found that not only direct contact of phosphopeptides with metal components, but also indirect contact with nanoLC pumps through the mobile phase causes significant losses during the recovery of phosphopeptides. Moreover, electrospray ionization was adversely affected by the mobile phase containing multiple metal ions as well as by the sample solvents contaminated with metal ions used in immobilized metal ion affinity chromatography for phosphopeptide enrichment. To solve these problems, metal ions were depleted by inserting an on-line metal ion removal device containing metal-chelating membranes between the gradient mixer and the autosampler. As a result, the peak areas of the identified phosphopeptides increased an average of 9.9-fold overall and 77-fold for multiply phosphorylated peptides with the insertion of the on-line metal ion removal system. This strategy would be applicable to highly sensitive analysis of other phosphorylated biomolecules by microscale-LC/MS/MS

    The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR

    Get PDF
    Escherichia coli RseP, a member of the S2P family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system

    Identifications of Putative PKA Substrates with Quantitative Phosphoproteomics and Primary-Sequence-Based Scoring

    No full text
    Protein kinase A (PKA or cAMP-dependent protein kinase) is a serine/threonine kinase that plays essential roles in the regulation of proliferation, differentiation, and apoptosis. To better understand the functions of PKA, it is necessary to elucidate the direct interplay between PKA and their substrates in living human cells. To identify kinase target substrates in a high-throughput manner, we first quantified the change of phosphoproteome in the cells of which PKA activity was perturbed by drug stimulations. LC–MS/MS analyses identified 2755 and 3191 phosphopeptides from experiments with activator or inhibitor of PKA. To exclude potential indirect targets of PKA, we built a computational model to characterize the kinase sequence specificity toward the substrate target site based on known kinase–substrate relationships. Finally, by combining the sequence recognition model with the quantitative changes in phosphorylation measured in the two drug perturbation experiments, we identified 29 reliable candidates of PKA targeting residues in living cells including 8 previously known substrates. Moreover, 18 of these sites were confirmed to be site-specifically phosphorylated in vitro. Altogether this study proposed a confident list of PKA substrate candidates, expanding our knowledge of PKA signaling network
    corecore