28 research outputs found

    Phobos Regolith Simulant for MMX Mission: Spectral Measurement for Remote Target Identification and Deconvolution System Training

    Get PDF
    The two natural satellites of Mars, Phobos and Deimos are both important targets for scientific investigation. The JAXA mission Martian Moons eXplorer (MMX) is designed to explore Phobos and Deimos, with a launch date scheduled for 2024. The MMX spacecraft will observe both Martian moons and will land on one of them (Phobos, most likely), to collect a sample and bring it back to Earth. The designs of both the landing and sampling devices depend largely on the surface properties of the target body and on how its surface is reacting to an external action in the low gravity conditions of the target. The Landing Operation Working Team (LOWT) of MMX started analyzing previous observations and theoretical/experimental considerations to better understand the nature of Phobos surface material, developing a Phobos regolith simulant material for the MMX mission [1]. At the Institute for Planetary Research of the German aerospace Center (DLR) in Berlin we performed a spectral characterization of the Phobos regolith simulant. Those data will be used to train an Artificial Neural Network (NN) to produce a system that could rapidly classify data during the mission and for endmember decomposition

    Lunar and Martian Silica

    No full text
    Silica polymorphs, such as quartz, tridymite, cristobalite, coesite, stishovite, seifertite, baddeleyite-type SiO2, high-pressure silica glass, moganite, and opal, have been found in lunar and/or martian rocks by macro-microanalyses of the samples and remote-sensing observations on the celestial bodies. Because each silica polymorph is stable or metastable at different pressure and temperature conditions, its appearance is variable depending on the occurrence of the lunar and martian rocks. In other words, types of silica polymorphs provide valuable information on the igneous process (e.g., crystallization temperature and cooling rate), shock metamorphism (e.g., shock pressure and temperature), and hydrothermal fluid activity (e.g., pH and water content), implying their importance in planetary science. Therefore, this article focused on reviewing and summarizing the representative and important investigations of lunar and martian silica from the viewpoints of its discovery from lunar and martian materials, the formation processes, the implications for planetary science, and the future prospects in the field of “micro-mineralogy”

    衝撃変成作用を受けた隕石に関する物質科学的研究

    No full text
    隕石試料は、母天体上での様々な地質学的イベント(たとえば衝撃変成作用、熱変成、大規模溶融など)を記録している。隕石に残された記録を、岩石・鉱物学的、宇宙化学的に読み取ることにより、太陽系固体物質の形成・進化過程に関する多くの知見を得ることができる。隕石の岩石組織、化学組成および同位体組成は、程度の違いはあるが、衝撃変成作用により初生の状態から変化している。隕石母天体の形成、進化過程を考える上で、衝撃変成作用が岩石に与える影響を明らかにすることは重要である。衝撃を受けた隕石の年代は、K-Ar (Ar-Ar), Rb-Sr, Sm-Nd, Lu-Hf, U-Th-Pb同位体系を用いて決定されてきた。しかしながら、衝撃変成度(岩石・鉱物学的特徴)と同位体年代が持つ地質学的意味については、これまでも議論されてきたが、不明な点も残されていた。衝撃変成作用が岩石・鉱物の組織、化学組成に及ぼす影響を明らかにするために、衝撃溶融したHコンドライトの物質科学的研究をおこない、形成環境を明らかにした(第1章)。Y-791088は、衝撃変成作用により構成相の約60%が溶融し、衝撃溶融により生じたメルトからかんらん石および輝石が晶出していた。LAP 02240は構成相の90%が溶融していた。Y-791088においては、コンドルールの形態を保持したまま溶融した「シュードモルフコンドルール」が確認された。一方、LAP 02240において認められたコンドルールは、変形したものであった。このことから、衝撃を受けた後、Y-791088は「静的環境」、LAP 02240は「動的環境」において形成したと解釈された。これまでに報告されていたY-791088およびLAP 02240の同位体系は、衝撃溶融をもたらした衝撃現象によって乱されていたことが明らかとなった。現在、衝撃を受けた火星隕石(シャーゴッタイト)から求められた同位体年代が示している地質学的意味について、議論が行われている。これまでに報告されたシャーゴッタイトのRb-Sr, Sm-Nd, Lu-Hf, U-Th-Pb同位体系の年代(~200 Ma)は、シャーゴッタイトの結晶化年代とみなされてきた。近年、シャーゴッタイトのPb-Pb年代(~4.1 Ga)を報告したグループは、水質変成もしくは衝撃変成により同位体系がリセットした年代が~200 Maであると解釈した。レーザアブレーションを併用した誘導結合プラズマ質量分析計(LA-ICP-MS)もしくは二次イオン質量分析計(SHRIMP II)を用いて、シャーゴッタイトに含まれるバデレアイトのU-Pb同位体年代測定が試みられていたが、衝撃変成による高圧・高温環境下における、バデレアイト中でのU-Pb同位体の挙動については不明な点が多かった。バデレアイトから求められるU-Pb年代が持つ地質学的意味を理解するために、年代既知のバデレアイトを用いた衝撃圧縮実験および加熱実験によりU-Pb同位体系への影響を評価した(第2章)。実験による衝撃圧~59 GPaおよび高温(1300 °C)環境下では、バデレアイトの高圧・高温相への相転移は認められなかった。周囲を取り囲む玄武岩が全溶融した条件下においても、バデレアイトは全溶融せず、U-Pb同位体系がリセットするような変化は認められなかった。このことから、バデレアイトのU-Pb同位体系は、周囲が全溶融する環境においても結晶化年代を保持していることが示唆された。シャーゴッタイトに含まれているバデレアイトから報告されたU-Pb年代は、(1)バデレアイトの粒径が小さい、(2)バデレアイト中のU濃度が低いことから、正確な年代データとはいえなかった。シャーゴッタイトが経験した衝撃変成度を明らかにするとともに、結晶化年代を求めることを目的として、衝撃を受けた火星隕石の物質科学的研究を行なった(第3章)。レルゾライト質シャーゴッタイトであるRoberts Massif (RBT) 04261においては、構成鉱物が破砕され、斜長石がマスケリナイト化し、メルトポケットが散在していたが、高圧鉱物は確認できなかった。このことから、本研究で用いたRBT 04261の研磨試料の領域では、30 GPaを超える衝撃圧を受けていないと結論された。粒径~10 μmのバデレアイトから、U-Pbコンコーディア年代(~200 Ma)が得られた。このバデレアイトから求められたU-Pb年代(~200 Ma)は、ペアのRBT 04262から求められたRb-Sr, Sm-Nd年代とよく一致しており、岩石・鉱物学的特徴を考慮すると、RBT 04261の形成(結晶化)年代を示していると結論された。隕石母天体上において、岩石・鉱物が溶融するような衝撃現象を経験した場合には、同位体系が乱され、さらに完全に同位体系が均質化される。閉鎖温度が高く、衝撃による高温・高圧環境下でも溶融しない鉱物(ジルコンやバデレアイト)においては、同位体系は容易に解放系にならず、結晶化年代を保持する。したがって、ジルコンやバデレアイトといった衝撃変成に対して耐性を持つ鉱物を用いることにより、隕石の結晶化年代を得ることができる。<br/

    Petrology and mineralogy of the shock-melted H chondrites Yamato–791088 and LaPaz Ice Field 02240

    Get PDF
    AbstractWe studied the petrology and mineralogy of two types of shock-melted H chondrites: Yamato (Y)–791088 and LaPaz Ice Field (LAP) 02240. Y–791088, which consists of numerous coarse-grained relict phases (40%) and euhedral fine-grained minerals solidified from the shock melt (60%), experienced incomplete melting; a quiescent melt is indicated by the existence of abundant relict phases, pseudomorphed chondrules, and two types of glass. LAP 02240, which consists of small amounts of coarse-grained relict phases (∼10%) and fine-grained minerals (∼90%), experienced near-complete melting; a rapidly cooled mobilized melt is indicated by the homogeneous compositions of glass and opaque veins.The homogeneous compositions of relict olivines indicate that the precursors of both chondrites were equilibrated H chondrites. The melting features of Y–791088 and LAP 02240 are very similar to those of Y–790964 (LL) and the fine-grained lithology of Y–790519 (LL), respectively. These two types of shock-melted ordinary chondrites possibly formed in situ during dike formation. The quiescent melt is thought to have originated from the injection of shock-heated chondrite blocks into mobilized melt. These two types of melting could have occurred during dike formation on the H chondrite parent body. The textures of the two types of shock melts were not simply affected by the degree of shock melting: they were also controlled by the degree of shear stress

    Experimental Evidence for Shear‐Induced Melting and Generation of Stishovite in Granite at Low (<18 GPa) Shock Pressure

    No full text
    AbstractKnowledge of the shock behavior of planetary materials is essential to interpret shock metamorphism documented in rocks at hypervelocity impact structures on Earth, in meteorites, and in samples retrieved in space missions. Although our understanding of shock metamorphism has improved considerably within the last decades, the effects of friction and plastic deformation on shock metamorphism of complex, polycrystalline, non‐porous rocks are poorly constrained. Here, we report on shock‐recovery experiments in which natural granite was dynamically compressed to 0.5–18 GPa by singular, hemispherically decaying shock fronts. We then combine petrographic observations of shocked samples that retained their pre‐impact stratigraphy with distributions of peak pressures, temperatures, and volumetric strain rates obtained from numerical modeling to systematically investigate progressive shock metamorphism of granite. We find that the progressive shock metamorphism of granite observed here is mainly consistent with current classification schemes. However, we also find that intense shear deformation during shock compression and release causes the formation of highly localized melt veins at peak pressures as low as 6 GPa, which is an order of magnitude lower than currently thought. We also find that melt veins formed in quartz grains compressed to &gt;10–12 GPa contain the high‐pressure silica polymorph stishovite. Our results illustrate the significance of shear and plastic deformation during hypervelocity impact and bear on our understanding of how melt veins containing high‐pressure polymorphs form in moderately shocked terrestrial impactites or meteorites.Plain Language Summary: When asteroids, comets, or smaller fragments thereof impact the solid surfaces of planets, moons, or other asteroids, the rocks they strike undergo sudden and irreversible changes while an impact crater forms. These material changes are called shock metamorphism and result from the extremely high pressures, temperatures, and deformation rates caused by the impact. However, the role of rapid shear deformation on impact heating and shock metamorphism is poorly understood. Using a novel experimental setup, we performed shock‐wave experiments with granite, a naturally occurring rock, that allows us to study the role of extreme deformation rates during impact‐crater formation. Furthermore, our experimental setup allows us to avoid several pitfalls such as excavation and ejection of shocked material from a growing impact crater or multiple reflections of shock waves at sample containers that typically plagued previous experiments. We find that intense shear deformation during crater formation results in significant but highly localized heating. This additional heating causes melting of granite at shock pressures as low as 6 GPa, which is about 10 times less than currently thought. Our findings may explain how thin melt veins often observed in shock‐metamorphosed meteorites or rocks sampled from terrestrial impact craters have formed.Key Points: We performed shock recovery experiments with granite and spherically decaying compressive waves; numerical models constrain peak pressures Shocked granite samples are found to retain pre‐impact stratigraphy and to document shock‐stage transitions between &lt;0.5 and ∼18 GPa Shear‐induced melting of granite at bulk peak pressures as low as 6 GPa; stishovite nucleated as a liquidus phase in melt veins at &gt;10 GPa Japan Society for the Promotion of ScienceDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/50110000165
    corecore