4 research outputs found

    Stability and Retraction Force Verification of a New Retractor Design for Minimally Invasive Surgery

    Get PDF
    Minimally Invasive Surgery (MIS) needs continuous tool design innovation to support and facilitate the complex task executions of surgeons. In this article, an easily deployable magnetic structure design is presented, which is developed to retract the liver during MIS procedures. During the concept designing phase, a most critical research question, the stability of magnetic anchoring was investigated and analyzed through various experiments. The clinically relevant pulling forces have been applied to N52 neodymium magnets in different size, shape and arrangement to derive the maximum force certain retractor designs could withheld. The numeric results confirmed that the distributed load arrangement would be able to perform a stable human liver retraction. Magnetic encoring technology could have a significant future, encouraging other researchers to investigate the potential of magnetic tissue retraction in MIS procedures that could lead tothe development of specialized tools for human clinical deployment

    CogInfoCom-Driven Surgical Skill Training and Assessment : Developing a Novel Anatomical Phantom and Performance Assessment Method for Laparoscopic Prostatectomy Training

    Get PDF
    The systematic assessment and development of human learning capabilities is one of the biggest challenges in applied sciences. It can be observed within the medical domain how evidence-based paradigms are gradually gaining space. In this chapter, the development process of a laparoscopic box trainer is introduced. A simulator including a phantom for prostatectomy is described, which feeds into medical staff training and skill assessment. An overview of laparoscopic surgical simulators is provided. Based on the state of the art and our previous experience, a clear need was formulated to develop a partially physical, partially computer-integrated simulator. To gain a better understanding of the cognitive load and physical stress, force measurement was used in the test environment. The force and time data were used to evaluate the performance of the participant. A new assessment method was described, which can be used to point out the weak aspects of surgical technique, and the participants can do this on their own. Computer-integrated assistive technologies for surgical education are believed to rapidly become the gold standard on a global scale

    Magnetic Anchoring Considerations for Retractors Supporting Manual and Robot-Assisted Minimally Invasive Surgery

    No full text
    The rise and advancement of minimally invasive surgery (MIS) has significantly improved patient outcomes, yet its technical challenges—such as tissue manipulation and tissue retraction—are not yet overcome. Robotic surgery offers some compensation for the ergonomic challenges, as retraction typically requires an extra robotic arm, which makes the complete system more costly. Our research aimed to explore the potential of rapidly deployable structures for soft tissue actuation and retraction, developing clinical and technical requirements and putting forward a critically evaluated concept design. With systematic measurements, we aimed to assess the load capacities and force tolerance of different magnetic constructions. Experimental and simulation work was conducted on the magnetic coupling technology to investigate the conditions where the clinically required lifting force of 11.25 N could be achieved for liver retraction. Various structure designs were investigated and tested with N52 neodymium magnets to create stable mechanisms for tissue retraction. The simplified design of a new MIS laparoscopic instrument was developed, including a deployable structure connecting the three internal rod magnets with joints and linkages that could act as an actuator for liver retraction. The deployable structure was designed to anchor strings or bands that could facilitate the lifting or sideways folding of the liver creating sufficient workspace for the target upper abdominal procedures. The critical analysis of the project concluded a notable potential of the developed solution for achieving improved liver retraction with minimal tissue damage and minimal distraction of the surgeon from the main focus of the operation, which could be beneficial, in principle, even at robot-assisted procedures

    Magnetic Anchoring Considerations for Retractors Supporting Manual and Robot-Assisted Minimally Invasive Surgery

    No full text
    The rise and advancement of minimally invasive surgery (MIS) has significantly improved patient outcomes, yet its technical challenges—such as tissue manipulation and tissue retraction—are not yet overcome. Robotic surgery offers some compensation for the ergonomic challenges, as retraction typically requires an extra robotic arm, which makes the complete system more costly. Our research aimed to explore the potential of rapidly deployable structures for soft tissue actuation and retraction, developing clinical and technical requirements and putting forward a critically evaluated concept design. With systematic measurements, we aimed to assess the load capacities and force tolerance of different magnetic constructions. Experimental and simulation work was conducted on the magnetic coupling technology to investigate the conditions where the clinically required lifting force of 11.25 N could be achieved for liver retraction. Various structure designs were investigated and tested with N52 neodymium magnets to create stable mechanisms for tissue retraction. The simplified design of a new MIS laparoscopic instrument was developed, including a deployable structure connecting the three internal rod magnets with joints and linkages that could act as an actuator for liver retraction. The deployable structure was designed to anchor strings or bands that could facilitate the lifting or sideways folding of the liver creating sufficient workspace for the target upper abdominal procedures. The critical analysis of the project concluded a notable potential of the developed solution for achieving improved liver retraction with minimal tissue damage and minimal distraction of the surgeon from the main focus of the operation, which could be beneficial, in principle, even at robot-assisted procedures
    corecore