1,913 research outputs found

    Universal Dynamics of Independent Critical Relaxation Modes

    Get PDF
    Scaling behavior is studied of several dominant eigenvalues of spectra of Markov matrices and the associated correlation times governing critical slowing down in models in the universality class of the two-dimensional Ising model. A scheme is developed to optimize variational approximants of progressively rapid, independent relaxation modes. These approximants are used to reduce the variance of results obtained by means of an adaptation of a quantum Monte Carlo method to compute eigenvalues subject to errors predominantly of statistical nature. The resulting spectra and correlation times are found to be universal up to a single, non-universal time scale for each model

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Finite temperature results on the 2d Ising model with mixed perturbation

    Full text link
    A numerical study of finite temperature features of thermodynamical observables is performed for the lattice 2d Ising model. Our results support the conjecture that the Finite Size Scaling analysis employed in the study of integrable perturbation of Conformal Field Theory is still valid in the present case, where a non-integrable perturbation is considered.Comment: 9 pages, Latex, added references and improved introductio

    Death is not a success: reflections on business exit

    Get PDF
    This article is a critical evaluation of claims that business exits should not be seen as failures, on the grounds that may constitute voluntary liquidation, or because they are learning opportunities. This can be seen as further evidence of bias affecting entrepreneurship research, where failures are repackaged as successes. This article reiterates that the majority of business exits are unsuccessful. Drawing on ideas from the organisational life course, it is suggested that business ‘death’ is a suitable term for describing business closure. Even cases of voluntary ‘harvest liquidation’ such as retirement can be meaningfully described as business deaths

    Critical line of an n-component cubic model

    Full text link
    We consider a special case of the n-component cubic model on the square lattice, for which an expansion exists in Ising-like graphs. We construct a transfer matrix and perform a finite-size-scaling analysis to determine the critical points for several values of n. Furthermore we determine several universal quantities, including three critical exponents. For n<2, these results agree well with the theoretical predictions for the critical O(n) branch. This model is also a special case of the (Nα,NÎČN_\alpha,N_\beta) model of Domany and Riedel. It appears that the self-dual plane of the latter model contains the exactly known critical points of the n=1 and 2 cubic models. For this reason we have checked whether this is also the case for 1<n<2. However, this possibility is excluded by our numerical results

    Comment on "Two Phase Transitions in the Fully frustrated XY Model"

    Full text link
    The conclusions of a recent paper by Olsson (Phys. Rev. Lett. 75, 2758 (1995), cond-mat/9506082) about the fully frustrated XY model in two dimensions are questioned. In particular, the evidence presented for having two separate chiral and U(1) phase transitions are critically considered.Comment: One page one table, to Appear in Physical Review Letter

    The Dynamic Exponent of the Two-Dimensional Ising Model and Monte Carlo Computation of the Sub-Dominant Eigenvalue of the Stochastic Matrix

    Get PDF
    We introduce a novel variance-reducing Monte Carlo algorithm for accurate determination of autocorrelation times. We apply this method to two-dimensional Ising systems with sizes up to 15×1515 \times 15, using single-spin flip dynamics, random site selection and transition probabilities according to the heat-bath method. From a finite-size scaling analysis of these autocorrelation times, the dynamical critical exponent zz is determined as z=2.1665z=2.1665 (12)

    Magnetization reversal times in the 2D Ising model

    Full text link
    We present a theoretical framework which is generally applicable to the study of time scales of activated processes in systems with Brownian type dynamics. This framework is applied to a prototype system: magnetization reversal times in the 2D Ising model. Direct simulation results for the magnetization reversal times, spanning more than five orders of magnitude, are compared with theoretical predictions; the two agree in most cases within 20%.Comment: 9 pages, 8 figure

    High precision Monte Carlo study of the 3D XY-universality class

    Full text link
    We present a Monte Carlo study of the two-component ϕ4\phi^4 model on the simple cubic lattice in three dimensions. By suitable tuning of the coupling constant λ\lambda we eliminate leading order corrections to scaling. High statistics simulations using finite size scaling techniques yield Îœ=0.6723(3)[8]\nu=0.6723(3)[8] and η=0.0381(2)[2]\eta=0.0381(2)[2], where the statistical and systematical errors are given in the first and second bracket, respectively. These results are more precise than any previous theoretical estimate of the critical exponents for the 3D XY universality class.Comment: 13 page

    Finite-size scaling corrections in two-dimensional Ising and Potts ferromagnets

    Full text link
    Finite-size corrections to scaling of critical correlation lengths and free energies of Ising and three-state Potts ferromagnets are analysed by numerical methods, on strips of width NN sites of square, triangular and honeycomb lattices. Strong evidence is given that the amplitudes of the ``analytical'' correction terms, N−2N^{-2}, are identically zero for triangular-- and honeycomb Ising systems. For Potts spins, our results are broadly consistent with this lattice-dependent pattern of cancellations, though for correlation lengths non-vanishing (albeit rather small) amplitudes cannot be entirely ruled out.Comment: 11 pages, LaTeX with Institute of Physics macros, 2 EPS figures; to appear in Journal of Physics
    • 

    corecore