1,863 research outputs found

    Heat capacity and magnetoresistance in Dy(Co,Si)2 compounds

    Full text link
    Magnetocaloric effect and magnetoresistance have been studied in Dy(Co1-xSix)2 [x=0, 0.075 and 0.15] compounds. Magnetocaloric effect has been calculated in terms of adiabatic temperatue change (Delta Tad) as well as isothermal magnetic entropy change (Delta SM) using the heat capacity data. The maximum values of DeltaSM and DeltaTad for DyCo2 are found to be 11.4 JKg-1K-1 and 5.4 K, respectively. Both DSM and DTad decrease with Si concentration, reaching a value of 5.4 JKg-1K-1 and 3 K, respectively for x=0.15. The maximum magnetoresistance is found to about 32% in DyCo2, which decreases with increase in Si. These variations are explained on the basis of itinerant electron metamagnetism occurring in these compounds.Comment: Total 8 pages of text and figure

    Heat capacity and magnetocaloric effect in polycrystalline Gd1-xSmxMn2Si2

    Full text link
    We report the magnetocaloric effect in terms of isothermal magnetic entropy change as well as adiabatic temperature change, calculated using the heat capacity data. Using the zero field heat capacity data, the magnetic contribution to the heat capacity has been estimated. The variations in the magnetocaloric behavior have been explained on the basis of the magnetic structure of these compounds. The refrigerant capacities have also been calculated for these compounds

    Multiple magnetic transitions and magnetocaloric effect in Gd1-xSmxMn2Ge2 compounds

    Full text link
    Magnetic and magnetocaloric properties of polycrystalline samples of Gd1-xSmxMn2Ge2 have been studied. All the compounds except GdMn2Ge2 show re-entrant ferromagnetic behavior. Multiple magnetic transitions observed in these compounds are explained on the basis of the temperature dependences of the exchange strengths of the rare earth and Mn sublattices. Magnetocaloric effect is found to be positive at the re-entrant ferromagnetic transition, whereas it is negative at the antiferro-ferromagnetic transition. In SmMn2Ge2, the magnetic entropy change associated with the re-entrant transition is found to decrease with field, which is attributed to the admixture effect of the crystal field levels. The isothermal magnetic entropy change is found to decrease with increase in Sm concentration.Comment:

    Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy

    Full text link
    The effect of pressure on the magnetic and the magnetocaloric properties around the martensitic transformation temperature in NiCoMnSb Heusler alloy has been studied. The martensitic transition temperature has significantly shifted to higher temperatures with pressure, whereas the trend is opposite with the application of applied magnetic field. The maximum magnetic entropy change around the martensitic transition temperature for Ni45Co5Mn38Sb12 is 41.4 J/kg K at the ambient pressure, whereas it is 33 J/kg K at 8.5 kbar. We find that by adjusting the Co concentration and applying suitable pressure, NiCoMnSb system can be tuned to achieve giant magnetocaloric effect spread over a large temperature span around the room temperature, thereby making it a potential magnetic refrigerant material for applications.Comment: 16 pages, 5 figure

    Mechanism of magnetostructural transformation in multifunctional Mn3_3GaC

    Full text link
    Mn3_3GaC undergoes a ferromagnetic to antiferromagnetic, volume discontinuous cubic-cubic phase transition as a function of temperature, pressure and magnetic field. Through a series of temperature dependent x-ray absorption fine structure spectroscopy experiments at the Mn K and Ga K edge, it is shown that the first order magnetic transformation in Mn3_3GaC is entirely due to distortions in Mn sub-lattice and with a very little role for Mn-C interactions. The distortion in Mn sub-lattice results in long and short Mn-Mn bonds with the longer Mn-Mn bonds favoring ferromagnetic interactions and the shorter Mn-Mn bonds favoring antiferromagnetic interactions. At the first order transition, the shorter Mn-Mn bonds exhibit an abrupt decrease in their length resulting in an antiferromagnetic ground state and a strained lattice.Comment: Accepted in J. Appl. Phys. Please contact authors for supplementary informatio
    corecore