79 research outputs found

    Patient preference and acceptability of calcium plus vitamin D3 supplementation: a randomised, open, cross-over trial

    Get PDF
    Preference for a drug formulation is important in adherence to long-term medication for chronic illnesses such as osteoporosis. We investigated the preference for and acceptability of chewable tablet containing calcium and vitamin D (Calci Chew D3, Nycomed) compared to that of a sachet containing calcium and vitamin D3 (Cad, Will-Pharma). This open, randomised, cross-over trial was set up to compare the preference and acceptability of two calcium plus vitamin D3 formulations (both with 500 mg calcium and 400/440 IU vitamin D3), given twice a day in patients with osteoporosis. Preference and acceptability were assessed by means of questionnaires. Preference was determined by asking the question, which treatment the patient preferred, and acceptability was measured by scoring five variables, using rating scales. Of the 102 patients indicating a preference for a trial medication, 67% preferred the chewable tablet, 19% the sachet with calcium and vitamin D3, and 15% stated no preference. The significant preference for Calci Chew D3 (p < 0.0001) was associated with higher scores for all five acceptability variables. The two formulations were tolerated equally well. A significant greater number of patients considered the chewable tablet as preferable and acceptable to the sachet, containing calcium and vitamin D3. Trial registration: Current Controlled Trials ISRCTN18822358

    Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromised hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome.We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%.This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes

    Changes in total body bone mineral density following a common bone health plan with two versions of a unique bone health supplement: a comparative effectiveness research study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The US Surgeon General's Report on Bone Health suggests America's bone-health is in jeopardy and issued a "call to action" to develop bone-health plans that: (1) improve nutrition, (2) increase health literacy and, (3) increase physical activity. This study is a response to this call to action.</p> <p>Methods</p> <p>After signing an informed consent, 158 adults agreed to follow an open-label bone-health plan for six months after taking a DXA test of bone density, a 43-chemistry blood test panel and a quality of life inventory (AlgaeCal 1). Two weeks after the last subject completed, a second group of 58 was enrolled and followed the identical plan, but with a different bone-health supplement (AlgaeCal 2).</p> <p>Results</p> <p>There were no significant differences between the two groups in baseline bone mineral density (BMD) or in variables related to BMD (age, sex, weight, percent body fat, fat mass, or fat-free mass). In both groups, no significant differences in BMD or related variables were found between volunteers and non-volunteers or between those who completed per protocol and those who were lost to attrition.</p> <p>Both groups experienced a significant positive mean annualized percent change (MAPC) in BMD compared to expectation [AlgaeCal 1: 1.15%, <it>p </it>= 0.001; AlgaeCal 2: 2.79%, <it>p </it>= 0.001]. Both groups experienced a positive MAPC compared to baseline, but only AlgaeCal 2 experienced a significant change [AlgaeCal 1: 0.48%, <it>p </it>= 0.14; AlgaeCal 2: 2.18%, <it>p </it>< 0.001]. The MAPC in AlgaeCal 2 was significantly greater than that in AlgaeCal 1 (<it>p </it>= 0.005). The MAPC contrast between compliant and partially compliant subjects was significant for both plans (<it>p </it>= 0.001 and <it>p </it>= 0.003 respectively). No clinically significant changes in a 43-panel blood chemistry test were found nor were there any changes in self-reported quality of life in either group.</p> <p>Conclusions</p> <p>Following The Plan for six months with either version of the bone health supplement was associated with significant increases in BMD as compared to expected and, in AlgaeCal 2, the increase from baseline was significantly greater than the increase from baseline in AlgaeCal 1. Increased compliance was associated with greater increases in BMD in both groups. No adverse effects were reported in either group.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01114685">NCT01114685</a></p

    Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The horn fly, <it>Haematobia irritans </it>(Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi).</p> <p>Results</p> <p>A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.</p> <p>Conclusions</p> <p>These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.</p

    Clinical implications of a possible role of vitamin D in multiple sclerosis

    Get PDF
    Hypovitaminosis D is currently one of the most studied environmental risk factors for multiple sclerosis (MS) and is potentially the most promising in terms of new clinical implications. These practical consequences, which could be applied to MS patients without further delay, constitute the main purpose of this review. Vitamin D is involved in a number of important general actions, which were not even suspected until quite recently. In particular, this vitamin could play an immunomodulatory role in the central nervous system. Many and varied arguments support a significant role for vitamin D in MS. In animal studies, vitamin D prevents and improves experimental autoimmune encephalomyelitis. Epidemiologically, latitude, past exposure to sun and the serum level of vitamin D influence the risk of MS, with, furthermore, significant links existing between these different factors. Clinically, most MS patients have low serum levels of vitamin D and are in a state of insufficiency or even deficiency compared to the international norm, which has been established on a metabolic basis. Large therapeutic trials using vitamin D are still lacking but the first results of phase I/II studies are promising. In the meantime, while awaiting the results of future therapeutic trials, it can no longer be ignored that many MS patients have a lack of vitamin D, which could be detected by a serum titration and corrected using an appropriate vitamin D supplementation in order to restore their serum level to within the normal range. From a purely medical point of view, vitamin D supplementation appears in this light to be unavoidable in order to improve the general state of these patients. Furthermore, it cannot currently be ruled out that this supplementation could also be neurologically beneficial

    Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    Get PDF
    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed

    Basic Science Considerations in Primary Total Hip Replacement Arthroplasty

    Get PDF
    Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement

    Observing the Reversible Single Molecule Electrochemistry of Alexa Fluor 647 Dyes by Total Internal Reflection Fluorescence Microscopy

    Full text link
    Alexa Fluor 647 is a widely used fluorescent probe for cell bioimaging and super-resolution microscopy. Herein, the reversible fluorescence switching of Alexa Fluor 647 conjugated to bovine serum albumin (BSA) and adsorbed onto indium tin oxide (ITO) electrodes under electrochemical potential control at the level of single protein molecules is reported. The modulation of the fluorescence as a function of potential was observed using total internal reflectance fluorescence (TIRF) microscopy. The fluorescence intensity of the Alexa Fluor 647 decreased, or reached background levels, at reducing potentials but returned to normal levels at oxidizing potentials. These electrochemically induced changes in fluorescence were sensitive to pH despite that BSA-Alexa Fluor 647 fluorescence without applied potential is insensitive to pH between values of 4–10. The observed pH dependence indicated the involvement of electron and proton transfer in the fluorescence switching mechanism
    corecore