1,026 research outputs found
Nonperturbative study of generalized ladder graphs in a \phi^2\chi theory
The Feynman-Schwinger representation is used to construct scalar-scalar bound
states for the set of all ladder and crossed-ladder graphs in a \phi^2\chi
theory in (3+1) dimensions. The results are compared to those of the usual
Bethe-Salpeter equation in the ladder approximation and of several
quasi-potential equations. Particularly for large couplings, the ladder
predictions are seen to underestimate the binding energy significantly as
compared to the generalized ladder case, whereas the solutions of the
quasi-potential equations provide a better correspondence. Results for the
calculated bound state wave functions are also presented.Comment: 5 pages revtex, 3 Postscripts figures, uses epsf.sty, accepted for
publication in Physical Review Letter
First-Order Logic Theorem Proving and Model Building via Approximation and Instantiation
In this paper we consider first-order logic theorem proving and model
building via approximation and instantiation. Given a clause set we propose its
approximation into a simplified clause set where satisfiability is decidable.
The approximation extends the signature and preserves unsatisfiability: if the
simplified clause set is satisfiable in some model, so is the original clause
set in the same model interpreted in the original signature. A refutation
generated by a decision procedure on the simplified clause set can then either
be lifted to a refutation in the original clause set, or it guides a refinement
excluding the previously found unliftable refutation. This way the approach is
refutationally complete. We do not step-wise lift refutations but conflicting
cores, finite unsatisfiable clause sets representing at least one refutation.
The approach is dual to many existing approaches in the literature because our
approximation preserves unsatisfiability
Relativistic bound-state equations in three dimensions
Firstly, a systematic procedure is derived for obtaining three-dimensional
bound-state equations from four-dimensional ones. Unlike ``quasi-potential
approaches'' this procedure does not involve the use of delta-function
constraints on the relative four-momentum. In the absence of negative-energy
states, the kernels of the three-dimensional equations derived by this
technique may be represented as sums of time-ordered perturbation theory
diagrams. Consequently, such equations have two major advantages over
quasi-potential equations: they may easily be written down in any Lorentz
frame, and they include the meson-retardation effects present in the original
four-dimensional equation. Secondly, a simple four-dimensional equation with
the correct one-body limit is obtained by a reorganization of the generalized
ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving
three-dimensional equations is applied to this four-dimensional equation, thus
yielding a retarded interaction for use in the three-dimensional bound-state
equation of Wallace and Mandelzweig. The resulting three-dimensional equation
has the correct one-body limit and may be systematically improved upon. The
quality of the three-dimensional equation, and our general technique for
deriving such equations, is then tested by calculating bound-state properties
in a scalar field theory using six different bound-state equations. It is found
that equations obtained using the method espoused here approximate the wave
functions obtained from their parent four-dimensional equations significantly
better than the corresponding quasi-potential equations do.Comment: 28 pages, RevTeX, 6 figures attached as postscript files. Accepted
for publication in Phys. Rev. C. Minor changes from original version do not
affect argument or conclusion
A CDCL-style calculus for solving non-linear constraints
In this paper we propose a novel approach for checking satisfiability of
non-linear constraints over the reals, called ksmt. The procedure is based on
conflict resolution in CDCL style calculus, using a composition of symbolical
and numerical methods. To deal with the non-linear components in case of
conflicts we use numerically constructed restricted linearisations. This
approach covers a large number of computable non-linear real functions such as
polynomials, rational or trigonometrical functions and beyond. A prototypical
implementation has been evaluated on several non-linear SMT-LIB examples and
the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at
<http://informatik.uni-trier.de/~brausse/ksmt/
Solitosynthesis of Q-balls
We study the formation of Q-balls in the early universe, concentrating on
potentials with a cubic or quartic attractive interaction. Large Q-balls can
form via solitosynthesis, a process of gradual charge accretion, provided some
primordial charge assymetry and initial ``seed'' Q-balls exist. We find that
such seeds are possible in theories in which the attractive interaction is of
the form , with a light ``Higgs'' mass. Condensate formation
and fragmentation is only possible for masses in the sub-eV range;
these Q-balls may survive untill present.Comment: 9 pages, 1 figur
Variational Worldline Approximation for the Relativistic Two-Body Bound State in a Scalar Model
We use the worldline representation of field theory together with a
variational approximation to determine the lowest bound state in the scalar
Wick-Cutkosky model where two equal-mass constituents interact via the exchange
of mesons. Self-energy and vertex corrections are included approximately in a
consistent way as well as crossed diagrams. Only vacuum-polarization effects of
the heavy particles are neglected. In a path integral description of an
appropriate current-current correlator an effective, retarded action is
obtained by integrating out the meson field. As in the polaron problem we
employ a quadratic trial action with variational functions to describe
retardation and binding effects through multiple meson exchange.The variational
equations for these functions are derived, discussed qualitatively and solved
numerically. We compare our results with the ones from traditional approaches
based on the Bethe-Salpeter equation and find an enhanced binding contrary to
some claims in the literature. For weak coupling this is worked out
analytically and compared with results from effective field theories. However,
the well-known instability of the model, which usually is ignored, now appears
at smaller coupling constants than in the one-body case and even when
self-energy and vertex corrections are turned off. This induced instability is
investigated analytically and the width of the bound state above the critical
coupling is estimated.Comment: 62 pages, 7 figures, FBS style, published versio
Role of retardation in 3-D relativistic equations
Equal-time Green's function is used to derive a three-dimensional integral
equation from the Bethe-Salpeter equation. The resultant equation, in the
absence of anti-particles, is identical to the use of time-ordered diagrams,
and has been used within the framework of coupling to study the
role of energy dependence and non-locality when the two-body potential is the
sum of -exchange and crossed exchange. The results show that
non-locality and energy dependence make a substantial contribution to both the
on-shell and off-shell amplitudes.Comment: 17 pages, RevTeX; 8 figures. Accepted for publication in Phys. Rev.
C56 (Nov. 97
SMT-based Model Checking for Recursive Programs
We present an SMT-based symbolic model checking algorithm for safety
verification of recursive programs. The algorithm is modular and analyzes
procedures individually. Unlike other SMT-based approaches, it maintains both
"over-" and "under-approximations" of procedure summaries. Under-approximations
are used to analyze procedure calls without inlining. Over-approximations are
used to block infeasible counterexamples and detect convergence to a proof. We
show that for programs and properties over a decidable theory, the algorithm is
guaranteed to find a counterexample, if one exists. However, efficiency depends
on an oracle for quantifier elimination (QE). For Boolean Programs, the
algorithm is a polynomial decision procedure, matching the worst-case bounds of
the best BDD-based algorithms. For Linear Arithmetic (integers and rationals),
we give an efficient instantiation of the algorithm by applying QE "lazily". We
use existing interpolation techniques to over-approximate QE and introduce
"Model Based Projection" to under-approximate QE. Empirical evaluation on
SV-COMP benchmarks shows that our algorithm improves significantly on the
state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed
typos, better wording at some place
Unifying Reasoning and Core-Guided Search for Maximum Satisfiability
A central algorithmic paradigm in maximum satisfiability solving geared towards real-world optimization problems is the core-guided approach. Furthermore, recent progress on preprocessing techniques is bringing in additional reasoning techniques to MaxSAT solving. Towards realizing their combined potential, understanding formal underpinnings of interleavings of preprocessing-style reasoning and core-guided algorithms is important. It turns out that earlier proposed notions for establishing correctness of core-guided algorithms and preprocessing, respectively, are not enough for capturing correctness of interleavings of the techniques. We provide an in-depth analysis of these and related MaxSAT instance transformations, and propose correction set reducibility as a notion that captures inprocessing MaxSAT solving within a state-transition style abstract MaxSAT solving framework. Furthermore, we establish a general theorem of correctness for applications of SAT-based preprocessing techniques in MaxSAT. The results pave way for generic techniques for arguing about the formal correctness of MaxSAT algorithms.Peer reviewe
Heavy pseudoscalar mesons in a Schwinger-Dyson--Bethe-Salpeter approach
The mass spectrum of heavy pseudoscalar mesons, described as quark-antiquark
bound systems, is considered within the Bethe-Salpeter formalism with
momentum-dependent masses of the constituents. This dependence is found by
solving the Schwinger-Dyson equation for quark propagators in rainbow-ladder
approximation. Such an approximation is known to provide both a fast
convergence of numerical methods and accurate results for lightest mesons.
However, as the meson mass increases, the method becomes less stable and
special attention must be devoted to details of numerical means of solving the
corresponding equations. We focus on the pseudoscalar sector and show that our
numerical scheme describes fairly accurately the , , , and
ground states. Excited states are considered as well. Our calculations
are directly related to the future physics programme at FAIR.Comment: 9 pages, 3 figures; Based on materials of the contribution
"Relativistic Description of Two- and Three-Body Systems in Nuclear Physics",
ECT*, October 19-23, 200
- …