141 research outputs found

    Application of a green's function method to the calculation of photoelectron spectra

    Get PDF
    An introduction is given to the many - body effects, which reveal themselves in photoelectron spectra, and to their origin. The consequences of these effects are discussed. The Green's function method is outlined as a tool for the accurate calculation of ionisation energies and the associated pole strengths. Applications are discussed. These include the question of the accuracy which is achieved. Formaldehyde, benzene, CS, CS2, N2, p-quinodimethane and the vibronic coupling in butatriene are given as examples

    Dynamics of streamer discharge development in semiconductors

    Get PDF
    Space-time dynamics of streamer discharges in semiconductors in view of processes of shock (tunnel and photo-) ionization, radiating spontaneous and stimulated recombination as well as electron-photon interaction in a strong electric field has been modeled. The possibility of formation in these conditions of space-nonuniform dissipative structures, self-oscillatory regular and other modes were shown; their laws and interrelation with dynamics of streamer laser discharge were established. Nonmonotonic dependence of system characteristics on key parameters - excitation rate, life time of nonequilibrium carriers and photons, quantum efficiency of active environment as well as strengthening of structure interaction in conditions of stimulated recombination causing variety of own system dynamics were revealed. Radiating processes provide high speed of structure distribution compared with phase speed of light, and they are the basic generation mechanism of nonequilibrium carriers generation in self-oscillatory mode respective to optimum conditions of streamer occurrence and developmen

    MEASURING DEVICE FOR ON-LINE CALCULATING AND SCREENING OF KNEE JOINT FORCES

    Get PDF
    INTRODUCTION: For calculating knee joint forces quasi-static and dynamic 2D knee models have been developed (Moeinzadeh et al., 1983, Nisell, 1985, Yamaguchi/ Zajac, 1989). From the preventive point of view the on-line calculation and screening of knee joint forces could give us important simultaneous feedback on the loads on the different structures during training and performance exercises in several sports. Based on these considerations an existing 2D knee model should be adapted for on-line calculating and screening of knee joint forces. METHODS: The purpose is to determine the kinematics of the knee joint as function of the knee angle. Therefore data from Yamaguchi/Zajac (1989), Nisell (1985) and ourselves were combined to the 2D model called 'Plakmos'. All relevant parameters needed for determining the kinematics of the knee were calculated for knee angles between 0° and 96° in steps of 2°. In a further procedure these data were calculated as polynomial functions of the knee angle up to order 10 using non-linear regression technique. These functions in combination with the direction, the magnitude and the point of application of the ground reaction force (GRF) are sufficient to obtain the main compression, shear and tendon forces. A special measuring device consisting of a force platform (for determining the direction, magnitude and application point of the GRF) and two goniometers (to obtain the ankle and knee angles) yields the input data for calculating the knee joint forces. The data collection and the calculation procedure is carried out using the measuring software Dasylab. RESULTS: The kinematics of Plakmos coincides with the knee models reported very closely, so the validity of the model is given with sufficient accuracy to investigate at least relative comparisons in different situations. The utility and simplicity of the measuring device including Plakmos has been demonstrated in comparative studies of knee bending with and without additional weights and different knee bending techniques. REFERENCES: Moeinzadeh, M., Engin, A., Akkas, N. (1983). Two-Dimensional Dynamic Modeling of Human Knee Joint. J. Biomechanics 16, 253-264. Nisell, R. (1985). Mechanics of the Knee. A. Orth. Scand, Suppl. 216, 56, 4-42. Yamaguchi, G., Zajac, F. (1989). A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism. J. Biomechanics 22, 1-10

    FORCE AND MOMENT MEASUREMENTS DURING ALPINE SKIING DEPENDING ON HEIGHT POSITION

    Get PDF
    INTRODUCTION: When a ski is set on edge a lever arm is produced by the force FS, which is applied through the skier’s leg and boot midline, and the ground reaction force FR, which acts on the ski edge. A moment is necessary to keep the ski in its position (see figure and compare with Lind). It is hypothesized that the magnitude of this moment is mainly determined by the width-height proportion of ski and binding. In order to adjust this moment, the skier has to rotate his knee inwards or angle his hip in the lateral direction (Lind, Howe). The objective of this study was to clarify whether the height of the binding plate has any influence on the generated moment. METHODS: A professional ski racer (A-Kader DSV) descended a giant slalom course (at 25° steepness) nine times consecutively. For every run the equipment was identical (skis: ATOMIC ARC RS, binding: ESS 10.28) except for the adjusted height of the binding plate. Three different height positions were used. System A was comprised without a plate between ski and binding, system B with a plate of 1 cm height and system C with a plate of 2 cm height. Using a previously described measuring boot (Wimmer), the ground reaction forces were determined at four distinct locations underneath the boot soles. The specific set-up of the force sensors (two at every edge of the skis) allowed us to calculate the generated moments by known lever-arms. RESULTS: Out of nine runs, seven runs differed in elapsed time by less than 0.3 sec, and the average duration was 20 sec. For this reason a good comparability can be derived. The three fastest runs were made with the 2 cm binding plate, the three slowest runs without the binding plate. The magnitude of ground reaction force ranged from 2000 to 3500 N. The calculated moment was approx. 40-70 Nm and was independent of height position at all turns. Indeed, the moment variation was more affected by the specific turns of the course than by height position. However, the force readings during turns (and thus the moments) were smoother when a higher plate was used. CONCLUSIONS: Because no moment differences could be assigned to the different height positions, the varying width-height-proportions of the three systems may have resulted in three different edging angles. For system C a smaller edging angle would be necessary than for system B, whereas system A would need the largest edging angle. This might be important for the skier, since a smaller body angle in the lateral direction would be necessary to maintain equilibrium using a binding plate

    STRN-ALK Fusion in a Case of Malignant Peritoneal Mesothelioma: Mixed Response to Crizotinib, Mode of Resistance, and Brigatinib Sequential Therapy

    Get PDF
    ALK fusions were first described by Morris et al1 in 1994. Several studies have reported genetic alterations of the ALK gene in various tumor types since then, consisting of mutations, amplifications, and fusions.1-3 Fusion proteins have an active C-terminal tyrosine kinase domain in common.3 Here, we describe an STRN-ALK fusion in malignant peritoneal mesothelioma (MPM), which has previously been documented in other neoplasms, including thyroid cancer, renal carcinoma, leukemia, lymphoma, colon adenocarcinoma, head and neck adenocarcinoma, pericardial and peritoneal mesothelioma, and cutaneous squamous cell carcinoma.4-6 MPM is a rare disease with an incidence of approximately seven per million people per year.7 Patients' life expectancy is low (on average 12 months) because of the late clinical presentation with abdominal or pelvic pain or lymphadenopathy.8,9 Recently, ALK rearrangements have gained attention, especially in young female patients with MPM. Hung et al10 identified three ALK fusions in 88 consecutively screened patients with MPM. Fusion partners were ATG16L1, TPM1, and STRN. In another study by Mian et al,11 among 32 patients ≤ 40 years old with mesothelioma (of which 25 were MPM), an ALK rearrangement was detected by fluorescence in situ hybridization in two patients (6%). One of the cases harbored an STRN-ALK fusion as described in the current case. Argani et al12 described additional five cases of ALK fusions in pediatric MPM. Subsequently, three more cases of STRN-ALK rearrangements in MPM have been published individually.6,13,14 In non–small-cell lung cancer (NSCLC), the discovery of specific drugs targeting ALK rearrangements led to significant therapeutic advances. Currently, various ALK inhibitors, namely, ceritinib, crizotinib, and alectinib, are used as first-line treatment in adult ALK-positive advanced NSCLC. Although crizotinib as a first-generation ALK inhibitor has already proven superiority over chemotherapy,15 next-generation ALK inhibitors such as ceritinib yielded even better survival rates.16 Moreover, both brigatinib and alectinib demonstrated superior effectiveness when directly compared with crizotinib.17,18 Unfortunately, resistance is frequently observed following an initial response in all these agents.19 Mechanisms of resistance, which often include ALK mutations, are in general universal although variable mutational frequencies are observed depending on the inhibitor.20 Despite this large base of knowledge for lung cancer, the evaluation of ALK fusions in other entities remains challenging because of limited available data

    Chemoproteomic Discovery of AADACL1 as a Regulator of Human Platelet Activation

    Get PDF
    A comprehensive knowledge of the platelet proteome is necessary for understanding thrombosis and for conceiving novel antiplatelet therapies. To discover new biochemical pathways in human platelets, we screened platelets with a carbamate library designed to interrogate the serine hydrolase subproteome and used competitive activity-based protein profiling to map the targets of active carbamates. We identified an inhibitor that targets arylacetamide deacetylase-like 1 (AADACL1), a lipid deacetylase originally identified in invasive cancers. Using this compound, along with highly selective second-generation inhibitors of AADACL1, metabolomics and RNA interference, we show that AADACL1 regulates platelet aggregation, thrombus growth, RAP1 and PKC activation, lipid metabolism and fibrinogen binding to platelets and megakaryocytes. These data provide the first evidence that AADACL1 regulates platelet and megakaryocyte activation and highlight the value of this chemoproteomic strategy for target discovery in platelets

    K0s K0s Final State in Two-Photon Collisions and Implications for Glueballs

    Get PDF
    The K0s K0s final state in two-photon collisions is studied with the L3 detector at LEP. The mass spectrum is dominated by the formation of the f_2'(1525) tensor meson in the helicity-two state with a two-photon width times the branching ratio into K Kbar of 76 +- 6 +- 11 eV. A clear signal for the formation of the f_J(1710) is observed and it is found to be dominated by the spin-two helicity-two state. No resonance is observed in the mass region around 2.2 GeV and an upper limit of 1.4 eV at 95% C.L. is derived for the two-photon width times the branching ratio into K0s K0s for the glueball candidate xi(2230)

    Search for Heavy Isosinglet Neutrino in e+e- Annihilation at LEP

    Get PDF
    We report on a search for the first generation heavy neutrino that is an isosinglet under the standard SU(2)_L gauge group. The data collected with the L3 detector at center-of-mass energies between 130 GeV and 208 GeV are used.The decay channel N_e --> eW is investigated and no evidence is found for a heavy neutrino, N_e, in a mass range between 80 GeV and 205 GeV. Upper limits on the mixing parameter between the heavy and light neutrino are derived

    Formation of the ηc\eta_c in Two-Photon Collisions at LEP

    Full text link
    The two-photon width Γγγ\Gamma_{\gamma\gamma} of the ηc\eta_c meson has been measured with the L3 detector at LEP. The ηc\eta_c is studied in the decay modes π+ππ+π\pi^+\pi^-\pi^+\pi^-, π+π\pi^+\pi^-K+^+K^-, Ks0_s^0K±π^\pm\pi^\mp, K+^+Kπ0^-\pi^{0}, π+πη\pi^+\pi^-\eta, π+πη\pi^+\pi^-\eta', and ρ+ρ\rho^+\rho^- using an integrated luminosity of 140 pb1^{-1} at s91\sqrt{s} \simeq 91 GeV and of 52 pb1^{-1} at s183\sqrt{s} \simeq 183 GeV. The result is Γγγ(ηc)=6.9±1.7(stat.)±0.8(sys.)±2.0\Gamma_{\gamma\gamma}(\eta_c) = 6.9 \pm 1.7 (stat.) \pm 0.8 (sys.) \pm 2.0(BR) keV. The Q2Q^2 dependence of the ηc\eta_c cross section is studied for Q2<9Q^2 < 9 GeV2^{2}. It is found to be better described by a Vector Meson Dominance model form factor with a J-pole than with a ρ\rho-pole. In addition, a signal of 29±1129 \pm 11 events is observed at the χc0\chi_c0 mass. Upper limits for the two-photon widths of the χc0\chi_c0, χc2\chi_c2, and ηc\eta_c' are also given
    corecore