647 research outputs found

    Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the Potts model

    Get PDF
    By relating the ground state of Temperley-Lieb hamiltonians to partition functions of 2D statistical mechanics systems on a half plane, and using a boundary Coulomb gas formalism, we obtain in closed form the valence bond entanglement entropy as well as the valence bond probability distribution in these ground states. We find in particular that for the XXX spin chain, the number N_c of valence bonds connecting a subsystem of size L to the outside goes, in the thermodynamic limit, as = (4/pi^2) ln L, disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/(3 ln 2) ln L. Our results generalize to the Q-state Potts model.Comment: 4 pages, 2 figure

    A constrained Potts antiferromagnet model with an interface representation

    Full text link
    We define a four-state Potts model ensemble on the square lattice, with the constraints that neighboring spins must have different values, and that no plaquette may contain all four states. The spin configurations may be mapped into those of a 2-dimensional interface in a 2+5 dimensional space. If this interface is in a Gaussian rough phase (as is the case for most other models with such a mapping), then the spin correlations are critical and their exponents can be related to the stiffness governing the interface fluctuations. Results of our Monte Carlo simulations show height fluctuations with an anomalous dependence on wavevector, intermediate between the behaviors expected in a rough phase and in a smooth phase; we argue that the smooth phase (which would imply long-range spin order) is the best interpretation.Comment: 61 pages, LaTeX. Submitted to J. Phys.

    Corner transfer matrix renormalization group method for two-dimensional self-avoiding walks and other O(n) models

    Full text link
    We present an extension of the corner transfer matrix renormalisation group (CTMRG) method to O(n) invariant models, with particular interest in the self-avoiding walk class of models (O(n=0)). The method is illustrated using an interacting self-avoiding walk model. Based on the efficiency and versatility when compared to other available numerical methods, we present CTMRG as the method of choice for two-dimensional self-avoiding walk problems.Comment: 4 pages 7 figures Substantial rewrite of previous version to include calculations of critical points and exponents. Final version accepted for publication in PRE (Rapid Communications

    Critical points in coupled Potts models and critical phases in coupled loop models

    Get PDF
    We show how to couple two critical Q-state Potts models to yield a new self-dual critical point. We also present strong evidence of a dense critical phase near this critical point when the Potts models are defined in their completely packed loop representations. In the continuum limit, the new critical point is described by an SU(2) coset conformal field theory, while in this limit of the the critical phase, the two loop models decouple. Using a combination of exact results and numerics, we also obtain the phase diagram in the presence of vacancies. We generalize these results to coupling two Potts models at different Q.Comment: 23 pages, 10 figure

    Critical exponents of domain walls in the two-dimensional Potts model

    Full text link
    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e., connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{l_1-l_2,2 l_1}, valid for 0 </- Q </- 4, that describe the insertion of l_1 thin and l_2 thick domain walls.Comment: 5 pages, 3 figures, 1 tabl

    Exact critical points of the O(nn) loop model on the martini and the 3-12 lattices

    Full text link
    We derive the exact critical line of the O(nn) loop model on the martini lattice as a function of the loop weight nn.A finite-size scaling analysis based on transfer matrix calculations is also performed.The numerical results coincide with the theoretical predictions with an accuracy up to 9 decimal places. In the limit n0n\to 0, this gives the exact connective constant μ=1.7505645579...\mu=1.7505645579... of self-avoiding walks on the martini lattice. Using similar numerical methods, we also study the O(nn) loop model on the 3-12 lattice. We obtain similarly precise agreement with the exact critical points given by Batchelor [J. Stat. Phys. 92, 1203 (1998)].Comment: 4 pages, 3 figures, 2 table

    An Intersecting Loop Model as a Solvable Super Spin Chain

    Get PDF
    In this paper we investigate an integrable loop model and its connection with a supersymmetric spin chain. The Bethe Ansatz solution allows us to study some properties of the ground state. When the loop fugacity qq lies in the physical regime, we conjecture that the central charge is c=q1c=q-1 for qq integer <2< 2. Low-lying excitations are examined, supporting a superdiffusive behavior for q=1q=1. We argue that these systems are interesting examples of integrable lattice models realizing c0c \leq 0 conformal field theories.Comment: latex file, 7 page

    Entanglement in gapless resonating valence bond states

    Full text link
    We study resonating-valence-bond (RVB) states on the square lattice of spins and of dimers, as well as SU(N)-invariant states that interpolate between the two. These states are ground states of gapless models, although the SU(2)-invariant spin RVB state is also believed to be a gapped liquid in its spinful sector. We show that the gapless behavior in spin and dimer RVB states is qualitatively similar by studying the R\'enyi entropy for splitting a torus into two cylinders, We compute this exactly for dimers, showing it behaves similarly to the familiar one-dimensional log term, although not identically. We extend the exact computation to an effective theory believed to interpolate among these states. By numerical calculations for the SU(2) RVB state and its SU(N)-invariant generalizations, we provide further support for this belief. We also show how the entanglement entropy behaves qualitatively differently for different values of the R\'enyi index nn, with large values of nn proving a more sensitive probe here, by virtue of exhibiting a striking even/odd effect.Comment: 44 pages, 14 figures, published versio

    Entanglement entropy of two disjoint intervals in conformal field theory

    Get PDF
    We study the entanglement of two disjoint intervals in the conformal field theory of the Luttinger liquid (free compactified boson). Tr\rho_A^n for any integer n is calculated as the four-point function of a particular type of twist fields and the final result is expressed in a compact form in terms of the Riemann-Siegel theta functions. In the decompactification limit we provide the analytic continuation valid for all model parameters and from this we extract the entanglement entropy. These predictions are checked against existing numerical data.Comment: 34 pages, 7 figures. V2: Results for small x behavior added, typos corrected and refs adde

    The "topological" charge for the finite XX quantum chain

    Full text link
    It is shown that an operator (in general non-local) commutes with the Hamiltonian describing the finite XX quantum chain with certain non-diagonal boundary terms. In the infinite volume limit this operator gives the "topological" charge.Comment: 5 page
    corecore