1,604 research outputs found
On the Contractivity of Hilbert-Schmidt distance under open system dynamics
We show that the Hilbert-Schmidt distance, unlike the trace distance, between
quantum states is generally not monotonic for open quantum systems subject to
Lindblad semigroup dynamics. Sufficient conditions for contractivity of the
Hilbert-Schmidt norm in terms of the dissipation generators are given. Although
these conditions are not necessary, simulations suggest that non-contractivity
is the typical case, i.e., that systems for which the Hilbert-Schmidt distance
between quantum states is monotonically decreasing form only a small set of all
possible dissipative systems for N>2, in contrast to the case N=2 where the
Hilbert-Schmidt distance is always monotonically decreasing.Comment: Major revision. We would particularly like to thank D Perez-Garcia
for constructive feedbac
A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions
By carrying out a systematic expansion of Feynman integrals in the lattice
spacing, we show that the axial anomaly in the U(1) lattice gauge theory with
Wilson fermions, as determined in one-loop order from an irrelevant lattice
operator in the Ward identity, must necessarily be identical to that computed
from the dimensionally regulated continuum Feynman integrals for the triangle
diagrams.Comment: 1 figure, LaTeX, 18 page
Thermal entanglement of spins in a nonuniform magnetic field
We study the effect of inhomogeneities in the magnetic field on the thermal
entanglement of a two spin system. We show that in the ferromagnetic case a
very small inhomogeneity is capable to produce large values of thermal
entanglement. This shows that the absence of entanglement in the ferromagnetic
Heisenberg system is highly unstable against inhomogeneoity of magnetic fields
which is inevitably present in any solid state realization of qubits.Comment: 14 pages, 7 figures, latex, Accepted for publication in Physical
Review
Schmidt Analysis of Pure-State Entanglement
We examine the application of Schmidt-mode analysis to pure state
entanglement. Several examples permitting exact analytic calculation of Schmidt
eigenvalues and eigenfunctions are included, as well as evaluation of the
associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria
Suppression of decoherence by bath ordering
The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an
extended model of the Tessieri-Wilkie Hamiltonian \cite{TWmodel}. The pair of
spins served as an open subsystem were prepared in one of the Bell states and
the bath consisted of some spins-1/2 is in a thermal equilibrium state from the
very beginning. It is found that with the increasing the coupling strength of
the bath spins, the bath forms a resonant antiferromagnetic order. The
polarization correlation between the two spins of the subsystem and the
concurrence are recovered in some extent to the isolated subsystem. This
suppression of the subsystem decoherence may be used to control the quantum
devices in practical applications.Comment: 32 pages, Chinese Physics (accepted
Unfrustrated Qudit Chains and their Ground States
We investigate chains of 'd' dimensional quantum spins (qudits) on a line
with generic nearest neighbor interactions without translational invariance. We
find the conditions under which these systems are not frustrated, i.e. when the
ground states are also the common ground states of all the local terms in the
Hamiltonians. The states of a quantum spin chain are naturally represented in
the Matrix Product States (MPS) framework. Using imaginary time evolution in
the MPS ansatz, we numerically investigate the range of parameters in which we
expect the ground states to be highly entangled and find them hard to
approximate using our MPS method.Comment: 5 pages, 5 figures. Typos correcte
Adiabatic entanglement transport in Rydberg aggregates
We consider the interplay between excitonic and atomic motion in a regular,
flexible chain of Rydberg atoms, extending our recent results on entanglement
transport in Rydberg chains [W\"uster et al., Phys.Rev.Lett 105 053004 (2010)].
In such a Rydberg chain, similar to molecular aggregates, an electronic
excitation is delocalised due to long range dipole-dipole interactions among
the atoms. The transport of an exciton that is initially trapped by a chain
dislocation is strongly coupled to nuclear dynamics, forming a localised pulse
of combined excitation and displacement. This pulse transfers entanglement
between dislocated atoms adiabatically along the chain. Details about the
interaction and the preparation of the initial state are discussed. We also
present evidence that the quantum dynamics of this complex many-body problem
can be accurately described by selected quantum-classical methods, which
greatly simplify investigations of excitation transport in flexible chains
A Taxonomy of Causality-Based Biological Properties
We formally characterize a set of causality-based properties of metabolic
networks. This set of properties aims at making precise several notions on the
production of metabolites, which are familiar in the biologists' terminology.
From a theoretical point of view, biochemical reactions are abstractly
represented as causal implications and the produced metabolites as causal
consequences of the implication representing the corresponding reaction. The
fact that a reactant is produced is represented by means of the chain of
reactions that have made it exist. Such representation abstracts away from
quantities, stoichiometric and thermodynamic parameters and constitutes the
basis for the characterization of our properties. Moreover, we propose an
effective method for verifying our properties based on an abstract model of
system dynamics. This consists of a new abstract semantics for the system seen
as a concurrent network and expressed using the Chemical Ground Form calculus.
We illustrate an application of this framework to a portion of a real
metabolic pathway
Three flavour Quark matter in chiral colour dielectric model
We investigate the properties of quark matter at finite density and
temperature using the nonlinear chiral extension of Colour Dielectric Model
(CCM). Assuming that the square of the meson fields devlop non- zero vacuum
expectation value, the thermodynamic potential for interacting three flavour
matter has been calculated. It is found that remain zero
in the medium whereas changes in the medium. As a result, and
quark masses decrease monotonically as the temperature and density of the quark
matter is increased.In the present model, the deconfinement density and
temperature is found to be lower compared to lattice results. We also study the
behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.
Application of quantum Darwinism to a structured environment
Quantum Darwinism extends the traditional formalism of decoherence to explain the emergence of classicality in a quantum universe. A classical description emerges when the environment tends to redundantly acquire information about the pointer states of an open system. In light of recent interest, we apply the theoretical tools of the framework to a qubit coupled with many bosonic subenvironments. We examine the degree to which the same classical information is encoded across collections of (i) complete subenvironments and (ii) residual “pseudomode” components of each subenvironment, the conception of which provides a dynamic representation of the reservoir memory. Overall, significant redundancy of information is found as a typical result of the decoherence process. However, by examining its decomposition in terms of classical and quantum correlations, we discover classical information to be nonredundant in both cases i and ii. Moreover, with the full collection of pseudomodes, certain dynamical regimes realize opposite effects, where either the total classical or quantum correlations predominantly decay over time. Finally, when the dynamics are non-Markovian, we find that redundant information is suppressed in line with information backflow to the qubit. By quantifying redundancy, we concretely show it to act as a witness to non-Markovianity in the same way as the trace distance does for nondivisible dynamical maps
- …