29,305 research outputs found

    Quantum Channels and Representation Theory

    Full text link
    In the study of d-dimensional quantum channels (d2)(d \geq 2), an assumption which is not very restrictive, and which has a natural physical interpretation, is that the corresponding Kraus operators form a representation of a Lie algebra. Physically, this is a symmetry algebra for the interaction Hamiltonian. This paper begins a systematic study of channels defined by representations; the famous Werner-Holevo channel is one element of this infinite class. We show that the channel derived from the defining representation of SU(n) is a depolarizing channel for all nn, but for most other representations this is not the case. Since the Bloch sphere is not appropriate here, we develop technology which is a generalization of Bloch's technique. Our method works by representing the density matrix as a polynomial in symmetrized products of Lie algebra generators, with coefficients that are symmetric tensors. Using these tensor methods we prove eleven theorems, derive many explicit formulas and show other interesting properties of quantum channels in various dimensions, with various Lie symmetry algebras. We also derive numerical estimates on the size of a generalized ``Bloch sphere'' for certain channels. There remain many open questions which are indicated at various points through the paper.Comment: 28 pages, 1 figur

    Exchange-controlled single-electron-spin rotations in quantum dots

    Full text link
    We show theoretically that arbitrary coherent rotations can be performed quickly (with a gating time ~1 ns) and with high fidelity on the spin of a single confined electron using control of exchange only, without the need for spin-orbit coupling or ac fields. We expect that implementations of this scheme would achieve gate error rates on the order of \eta ~ 10^{-3} in GaAs quantum dots, within reach of several known error-correction protocolsComment: 4+ pages, 3 figures; v2: Streamlined presentation, final version published in PRB (Rapid Comm.

    True photo-counting statistics of multiple on-off detectors

    Full text link
    We derive a closed photo-counting formula, including noise counts and a finite quantum efficiency, for photon number resolving detectors based on on-off detectors. It applies to detection schemes such as array detectors and multiplexing setups. The result renders it possible to compare the corresponding measured counting statistics with the true photon number statistics of arbitrary quantum states. The photo-counting formula is applied to the discrimination of photon numbers of Fock states, squeezed states, and odd coherent states. It is illustrated for coherent states that our formula is indispensable for the correct interpretation of quantum effects observed with such devices.Comment: 7 pages, 4 figure

    Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries

    Full text link
    The operator-Schmidt decomposition is useful in quantum information theory for quantifying the nonlocality of bipartite unitary operations. We construct a family of unitary operators on C^n tensor C^n whose operator-Schmidt decompositions are computed using the discrete Fourier transform. As a corollary, we produce unitaries on C^3 tensor C^3 with operator-Schmidt number S for every S in {1,...,9}. This corollary was unexpected, since it contradicted reasonable conjectures of Nielsen et al [Phys. Rev. A 67 (2003) 052301] based on intuition from a striking result in the two-qubit case. By the results of Dur, Vidal, and Cirac [Phys. Rev. Lett. 89 (2002) 057901 quant-ph/0112124], who also considered the two-qubit case, our result implies that there are nine equivalence classes of unitaries on C^3 tensor C^3 which are probabilistically interconvertible by (stochastic) local operations and classical communication. As another corollary, a prescription is produced for constructing maximally-entangled operators from biunimodular functions. Reversing tact, we state a generalized operator-Schmidt decomposition of the quantum Fourier transform considered as an operator C^M_1 tensor C^M_2 --> C^N_1 tensor C^N_2, with M_1 x M_2 = N_1 x N_2. This decomposition shows (by Nielsen's bound) that the communication cost of the QFT remains maximal when a net transfer of qudits is permitted. In an appendix, a canonical procedure is given for removing basis-dependence for results and proofs depending on the "magic basis" introduced in [S. Hill and W. Wootters, "Entanglement of a pair of quantum bits," Phys Rev. Lett 78 (1997) 5022-5025, quant-ph/9703041 (and quant-ph/9709029)].Comment: More formal version of my talk at the Simons Conference on Quantum and Reversible Computation at Stony Brook May 31, 2003. The talk slides and audio are available at http://www.physics.sunysb.edu/itp/conf/simons-qcomputation.html. Fixed typos and minor cosmetic

    Distilling entanglement from arbitrary resources

    Full text link
    We obtain the general formula for the optimal rate at which singlets can be distilled from any given noisy and arbitrarily correlated entanglement resource, by means of local operations and classical communication (LOCC). Our formula, obtained by employing the quantum information spectrum method, reduces to that derived by Devetak and Winter, in the special case of an i.i.d. resource. The proofs rely on a one-shot version of the so-called "hashing bound," which in turn provides bounds on the one-shot distillable entanglement under general LOCC.Comment: 24 pages, article class, no figure. v2: references added, published versio

    A Simple Algorithm for Local Conversion of Pure States

    Get PDF
    We describe an algorithm for converting one bipartite quantum state into another using only local operations and classical communication, which is much simpler than the original algorithm given by Nielsen [Phys. Rev. Lett. 83, 436 (1999)]. Our algorithm uses only a single measurement by one of the parties, followed by local unitary operations which are permutations in the local Schmidt bases.Comment: 5 pages, LaTeX, reference adde

    Implementation of the three-qubit phase-flip error correction code with superconducting qubits

    Get PDF
    We investigate the performance of a three qubit error correcting code in the framework of superconducting qubit implementations. Such a code can recover a quantum state perfectly in the case of dephasing errors but only in situations where the dephasing rate is low. Numerical studies in previous work have however shown that the code does increase the fidelity of the encoded state even in the presence of high error probability, during both storage and processing. In this work we give analytical expressions for the fidelity of such a code. We consider two specific schemes for qubit-qubit interaction realizable in superconducting systems; one σzσz\sigma_z\sigma_z-coupling and one cavity mediated coupling. With these realizations in mind, and considering errors during storing as well as processing, we calculate the maximum operation time allowed in order to still benefit from the code. We show that this limit can be reached with current technology.Comment: 10 pages, 8 figure

    Physical Purification of Quantum States

    Full text link
    We introduce the concept of a physical process that purifies a mixed quantum state, taken from a set of states, and investigate the conditions under which such a purification map exists. Here, a purification of a mixed quantum state is a pure state in a higher-dimensional Hilbert space, the reduced density matrix of which is identical to the original state. We characterize all sets of mixed quantum states, for which perfect purification is possible. Surprisingly, some sets of two non-commuting states are among them. Furthermore, we investigate the possibility of performing an imperfect purification.Comment: 5 pages, 1 figure; published versio

    Photon-assisted entanglement creation by minimum-error generalized quantum measurements in the strong coupling regime

    Full text link
    We explore possibilities of entangling two distant material qubits with the help of an optical radiation field in the regime of strong quantum electrodynamical coupling with almost resonant interaction. For this purpose the optimum generalized field measurements are determined which are capable of preparing a two-qubit Bell state by postselection with minimum error. It is demonstrated that in the strong-coupling regime some of the recently found limitations of the non-resonant weak-coupling regime can be circumvented successfully due to characteristic quantum electrodynamical quantum interference effects. In particular, in the absence of photon loss it is possible to postselect two-qubit Bell states with fidelities close to unity by a proper choice of the relevant interaction time. Even in the presence of photon loss this strong-coupling regime offers interesting perspectives for creating spatially well-separated Bell pairs with high fidelities, high success probabilities, and high repetition rates which are relevant for future realizations of quantum repeaters.Comment: 14 pages, 12 figure
    corecore