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We investigate the performance of a three-qubit error correcting code in the framework of superconducting
qubit implementations. Such a code can recover a quantum state perfectly in the case of dephasing errors but
only in situations where the dephasing rate is low. Numerical studies in previous work have however shown
that the code does increase the fidelity of the encoded state even in the presence of high error probability,
during both storage and processing. In this work we give analytical expressions for the fidelity of such a code.
We consider two specific schemes for qubit-qubit interaction realizable in superconducting systems; one �z�z

coupling and one cavity-mediated coupling. With these realizations in mind, and considering errors during
storing as well as processing, we calculate the maximum operation time allowed in order to still benefit from
the code. We show that this limit can be reached with current technology.

DOI: 10.1103/PhysRevB.77.214528 PACS number�s�: 03.67.Pp, 85.25.Cp, 03.67.Lx, 03.67.Ac

I. INTRODUCTION

Recent experimental achievements in coupling supercon-
ducting qubits1–7 open up for investigating physical realiza-
tions of simple few-qubit algorithms in such systems. One
example of such a code is the three-qubit quantum error cor-
rection code �QECC�,8,9 which is able to correct for a single
type of error acting on the physical qubits. This QECC has
successfully been implemented in other systems10–13 proving
the possibility to prolong the lifetime of a logical qubit by
redundantly encoding its quantum state into three physical
qubits.

In this paper we put the three-qubit QECC into the con-
text of quantum computation with superconducting qubits.
The dominant noise in such systems is dephasing, that is the
loss of phase coherence between the computational states in
the system. This is a process that can be modeled as a single
type error,14 and can thus be corrected for by the QECC in
question. However, the code can only recover the state per-
fectly under the assumption that errors on more than one
qubit at a time can be neglected, and that the gates are in-
stantaneous in time. If this is not the case, uncorrectable
errors will occur during the storage of the quantum state as
well as during the execution of the gates. In superconducting
qubit systems, the dephasing rate is unfortunately compa-
rable to the coupling energy between the qubits. In such
systems the above assumptions are not justifiable and cor-
rectable errors will be accompanied by uncorrectable ones.
In this paper we investigate the performance of the three-
qubit QECC for realistic gates in superconducting systems
with relevant dephasing times. We address the question of
how fast the two-qubit gate operation times need to be in
order to benefit from coding, and if this limit can be reached
with current technology.

Previous work addressing the questions of uncorrectable
errors and noise during processing have either focused on
continuous error correction where the gate operations are in-
stantaneous in time15–17 or relied on numerical studies to
investigate the effect of noise during the gate operations.18,19

In the regime of fast gate operations, the effects of correlated
noise have also been studied.20 In this paper we take a dif-
ferent approach, where all single-qubit operations are consid-
ered to be much faster than the dephasing time tsqo�T2. We
can therefore neglect the errors that occur on this time scale.
As the two-qubit gate we consider the controlled-phase
�cPhase� gate which is diagonal in the computational basis.
Two realizations of this gate, relevant for superconducting
implementations, are considered. In the first case, the cou-
pling Hamiltonian itself is diagonal �experimentally achiev-
able via e.g., a large Josephson junction21�. This allows us to
calculate the fidelity of the corrected state analytically. In the
second case the qubit-qubit coupling is mediated by a cavity
bus22 where the dipole coupling between the cavity and qu-
bits yields a Jaynes-Cummings type of interaction. Similar
systems have recently attracted much attention due to their
long coherence times.23,24 In this case the coupling is how-
ever not diagonal and we have to calculate the fidelity of the
QECC numerically. We show that the fidelity of the QECC
when using the cavity-mediated coupling is comparable to
the case when the diagonal cPhase gate is used. The structure
of the paper is as follows. In Sec. II we briefly discuss the
model used to describe dephasing and introduce the three-
qubit QECC with instantaneous gates. In Secs. III and IV we
consider realistic implementations of gates. The diagonal
coupling is considered in Sec. III and the cavity-mediated
coupling in Sec. IV. We conclude in Sec. V.

II. INSTANTANEOUS GATES

We begin by describing the QECC in the ideal case,
where only single errors are present, and the gates are instan-
taneous. In Sec. II B we relax the first approximation and
study the case of multiple errors.

The Hamiltonian for a qubit coupled longitudinally to a
heat bath of harmonic oscillators is given by

H = −
E

2
�z + �z�

i

��i�bi + bi
†� + �

i

��ibi
†bi, �1�

where E is the qubit level splitting and bi
† /bi the usual

creation/annihilation operators of the harmonic oscillator.
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With this Hamiltonian, one can derive a master equation in
the Markov limit25

�̇�t� = −
��

2
���t� − �z��t��z� , �2�

where �� is the dephasing rate given by ��=4 Re L�0�,
where Re L��� is the real part of the correlation function
�noise spectral density� of the bath

Re L��� = 	
����2���n̄��,T�

��exp� ��

kBT
����� + ��− ��� . �3�

Here ����� is the coupling energy to the bath, 
��� is the
bath density of states, n̄= �exp��� /kBT�−1	−1 the Bose oc-
cupation number, and ��x� is the step function where we
adopt the convention ��0�=1 /2. We leave these quantities
unspecified since the experimental parameter of interest is
the dephasing rate itself. �See Appendix A for further de-
tails�. Solving Eq. �2� gives an exponential decay of the off-
diagonal elements in the density matrix

�ij = e−��t�ij�0� . �4�

The diagonal elements are stationary in time. The results for
the diagonal and off-diagonal elements can be combined into
the solution

��t� = p�t���0� + �1 − p�t�	�z��0��z �5�

where p�t� can be given the meaning of a time-dependent
probability for the qubit to be in the correct state

p�t� =
1

2
�1 + exp�− ��t�	 . �6�

In this paper we assume the dephasing to act independently
on each qubit. In the presence of noise all three qubits in the
circuit will thus evolve according to Eq. �5�. This form al-
lows us to interpret dephasing as a stochastic process where
a phase flip occurs with probability 1− p�t�. This discretiza-
tion of the continuous phase damping is the very core of
quantum error correction.

A. One qubit error

The three-qubit QECC that corrects for phase flips is de-
picted in Fig. 1. The qubit is initially in the state 
�=�
g�
+�
e� and the ancillas are initiated in the ground state 
gg�.
The first part of the circuit �dashed box� serves to entangle
the three qubits leaving them in the encoded state


�� = �
ggg� + �
eee� . �7�

The role of the Hadamard gates is to rotate the phase flip of
Eq. �5� into a bit flip H�zH=�x. Thus, during the part of the
evolution where errors occur, all three qubits will evolve
according to Eq. �5�, but with �z replaced with �x. If the
dephasing is weak ��t�1, the error probability is small 1
− p�t��1, and we can neglect terms representing errors oc-
curring on more than one qubit at a time. Just before the
decoding part �dotted box�, the three qubits are in a mixed

state with the following probabilities to find the system in the
respective pure states:

p3:�
ggg� + �
eee� ,

p2�1 − p�:�
egg� + �
gee� ,

p2�1 − p�:�
geg� + �
ege� ,

p2�1 − p�:�
gge� + �
eeg� . �8�

After the decoding the states are given by

p3:��
g� + �
e��
gg� ,

p2�1 − p�:��
e� + �
g��
ee� ,

p2�1 − p�:��
g� + �
e��
eg� ,

p2�1 − p�:��
g� + �
e��
ge� , �9�

after which the Toffoli gate is applied, flipping the state of
the first qubit if and only if the ancillas are in the state 
ee�.
We see that this rotates the erroneous qubit state back into
the correct one while leaving the others unaltered. The ancil-
las are then traced out leaving the qubit in the original pure
state 
�. Note that all states in Eq. �8� are mutually orthogo-
nal, which is the reason why the code can detect and recover
the state with perfect fidelity. More explicitly, the three qu-
bits span an eight-dimensional Hilbert space, which can sus-
tain four mutually two-dimensional orthogonal subspaces.
Each error resides in one subspace, and the code word in the
remaining one. Due to the mutual orthogonality, the different
errors can be distinguished and appropriate measures can be
taken to rotate them back into the code space. From this it is
clear that three different errors is all the three-qubit QECC
can correct for.

When the error probability is no longer small, one has to
consider all the terms in the time evolution of the density
matrix. Since this introduces additional errors it is clear that
the QECC can no longer preserve the state with perfect fi-
delity. In the remaining part of the paper we consider this
situation and investigate how the lifetime of the quantum
state can be prolonged using realistic values for dephasing
and gate operation times in superconducting systems.

FIG. 1. The three-qubit QECC for correcting phase-flip errors.
The state of the information-carrying qubit is encoded with three
qubits, using two ancilla qubits which are initially in the state 
g�.
After decoding, a single phase flip on the information-carrying qu-
bit is corrected by a Toffoli gate, controlled by the two ancilla
qubits. A single-qubit operation, conditioned by a measurement of
the two ancilla qubits, can substitute for the Toffoli gate.
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B. Multiple qubit errors

We begin by considering the ideal case where all gates are
assumed to be implemented on a time scale much shorter
than the dephasing time. We thus assume that no errors occur
during the execution of the gates. To reach this limit in su-
perconducting implementations more work on reducing
noise is however still required. Hence the results of this sec-
tion will only be used as a benchmark for situations where
this approximation is relaxed and gate errors are included.

From the time dependence of p�t� the error probability
can no longer be considered small as ��t�1. As discussed in
Sec. II A, we must take into account higher order terms and
include processes where errors occur on two and three qubits
simultaneously. The initial density matrix ��0� is given by
the pure three-qubit state used to encode the logical bit 
��
=�
000�+�
111�. After the occurrence of the errors we de-
code and correct according to the scheme presented in Sec.
II A. The two ancilla qubits are then traced out leaving a
corrupted single qubit mixed final state

��t� = pc�t���0� + �1 − pc�t�	�x��0��x, �10�

with the probability18

pc�t� =
1

2
�1 + �3 − e−2��t�e−��t/2	 . �11�

Comparing Eqs. �6� and �11� we see that if the correction
procedure is applied often enough ��t�1, the probability to
be in the correct state can be improved from O���t� to
O����t�2�.18 This regime is not accessible in all devices. We
see however that p�t�� pc�t� for all t, making it clear that it
always is beneficial to do the error correction in the above
situation. With this in mind we now calculate how much the
dephasing rate can be reduced with realistic parameters.
From Eq. �10� we make the observation that the error and
correction either flip the state of the qubit or leave it unaf-
fected. Repeating the procedure does not alter this situation.

Thus in principle we can correct repeatedly and derive an
effective dephasing rate. The probability pc,n to be in the
correct state after n such correction cycles obeys the equation

� pc,n

1 − pc,n
� = � pc�tc� 1 − pc�tc�

1 − pc�tc� pc�tc�
�n�1

0
� , �12�

where �1,0� and �0,1� denote the correct and flipped state,
respectively, and tc is the duration of the cycle. This equation
is easily solved yielding

pc,n =
1

2
�1 +

�3 − e−2��tc�n

2n e−��ntc� . �13�

Comparing Eqs. �6� and �13� with t=ntc we may derive an
effective dephasing rate �eff such that peff�t�= 1

2 �1+e−�efft	.
The effective rate �eff is related to tc and �� according to

�eff = ���1 −
1

��tc
ln�3 − e−2��tc

2
�� , �14�

giving �eff��� for all ��tc as can be seen in Fig. 2 where
the ratio �eff /�� is plotted as a function of ��tc. We also
indicate the value of �eff /�� that can be achieved with cur-
rent examples of superconducting qubit implementations.
Here we have estimated the repetition time as tc�� /g, g
being the qubit-qubit coupling energy. We see that, even for
realistic parameters, there can be a significant increase in
coherence in the encoded quantum state. This shows that the
three-qubit QECC can be used to prolong the lifetime of the
qubit even when the assumption of instantaneous gates is
relaxed.

III. DIRECT QUBIT COUPLING

We now depart from the approximation of perfect pro-
cessing and consider the regime where ��top�1, taking into
account the errors that occur during the two-qubit gate op-
erations. We however make the assumption of fast single-
qubit operations tsqo�1 /�� and neglect any dephasing oc-
curring on this time scale. We first consider the performance
of the QECC protocol when the information-carrying qubit is
coupled directly to each ancilla qubit with a coupling which
is diagonal in the energy eigenbasis

H = �
i

Ei�z
�i� + �i�z

�i��z
�i+1�. �15�

Such a coupling can be realized using e.g., the circulating
currents in ring-shaped CPB qubits26 interacting via a large
Josephson junction.21 This coupling, together with single-
qubit phase gates naturally gives rise to the general
controlled-phase gate; diag�1,1 ,1 ,exp�i4�T /�		, which for
the interaction time �T=�	 /4 generates the cPhase gate.
The advantages of studying the implementation of QECC
with this setup first are: �1� the cPhase gate is also a natural
gate for the cavity-mediated qubit coupling, and �2� using the
cPhase gate to implement the cNOT gates as shown in Fig. 3,
the error operators I and �z �see Eq. �5�	 commute with all
gates inside the circuit except for the single-qubit Hadamard
gates. This implies that the errors occurring during the ex-
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FIG. 2. �Color online� The ratio �eff /�� plotted as a function of
the renormalized correction time ��tc. We mark four realistic values
of �eff /�� which can be achieved using current technology in su-
perconducting qubits.
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ecution of the cPhase can be moved to the end or beginning
of the gate as indicated in Fig. 4. Denoting the gate operation
time tg and the storage time ts, we see that the ancillas are
subject to the same errors as before, but now during a longer
time 2tg+ ts. The error on the uppermost line, however, must
be divided into three parts, since it is separated by the Had-
amard gates. Calculating ��t� thus reduces to the calculation
of 2 ·8 ·2=32 terms in the operator sum representation,
which is analytically tractable �cf. 8 ·8 ·8=512 terms if the
errors on the ancillas could not be collected�. Since the Tof-
foli gate can be replaced with fast measurements we also
neglect errors occurring during the execution of this. The
final state of the qubit after detection and correction is given
by the density matrix

��t� = p1�1 + px�x + py�y + pz�z,

�1 = 1�1:p1  P+�p�tg�2 + �1 − p�tg�	2�

�z = �z��z:pz  2P+p�tg��1 − p�tg�	 ,

�x = �x��x:px  P−�p�tg�2 + �1 − p�tg�	2� ,

�y = �y��y:py  2P−p�tg��1 − p�tg�	 , �16�

with p�tg� as in Eq. �6� and the probabilities P+ and P− given
by

P� =
1

4
�2 � e−�ts � 2e−��2tg+ts� � e−��4tg+3ts�� . �17�

Since there now is more than one type of error present in the
final state of the qubit, it is no longer meaningful to compare
the error probabilities directly. Instead we use the fidelity14

F�t� = �
��t�
� �18�

between the initial state 
� and the corrupted state ��t� of
Eq. �16� to quantify the benefit of using the QECC. Since
F�t� depends on the initial state 
� we use the minimum
fidelity as a measure of the code performance

Fmin = min

�

F�t� . �19�

To find this minimum fidelity, we make the observation that
P+� P− for all times tg , ts. This, together with the fact that
p�tg�2+ �1− p�tg�	2�2p�tg��1− p�tg�	 for all tg gives us the
inequalities �see Eq. �16�	 p1� pz� py and px� py. This in
turn gives the minimum fidelity according to

Fdiag = p1 + px��x�2 + py��y�2 + pz��z�2 � p1 + py���x�2

+ ��y�2 + ��z�2� = p1 + py  Fdiag
min . �20�

Thus, we find the minimum fidelity for a �y eigenstate, as
opposed to Ref. 18 where the input state that minimizes the
fidelity lies in the xz plane between 
0� and �
0�+ 
1�� /�2,
depending on the ratio ts / tg.

We now compare the minimum fidelity between the state
in Eq. �16� and the uncorrected state which is subject to the
same dephasing given by

Fmin = p�t� , �21�

with t=2tg+ ts. The difference in fidelities Fdiag
min −Fmin is plot-

ted in Fig. 5. For perfect gates, coding improved the fidelity
for all times. The situation is drastically different when errors
occur during processing. There is now a lower limit on the
speed of the gate operations, given by Fmin=Fdiag

min , above
which QECC is beneficial. This condition can equally be
stated as a relation between tg and ts given by

ts =
1

2�
�− 6��tg − log�e−4��tg�2 − e2��tg�	� , �22�

which is plotted as the white line in Fig. 5. If we believe that
error correction is crucial to the realization of large scale
quantum computing this limit sets the standard for how fast
processing needs to be. The maximum time tg

max allowed in
order to benefit from the error correction is easily obtained
from Eq. �22�:

tg
max =

log 2

2��

. �23�

For typical values of the dephasing time in superconducting
systems t��1 �s, this gives a maximum gate operation time
of the order 0.1 �s. From Fig. 5 it is clear that, for each
fixed value of ��tg there exists an optimum storage time such
that the difference Fdiag

min −Fmin is maximized

ts
opt = −

1

2��
�2��tg + log�2 − e2��tg

3
�� . �24�

This is plotted with a solid black line in the tstg plane of Fig.
5.

FIG. 3. Gate sequence for encoding and decoding. The CNOT
gates can be implemented using the diagonal cPhase gate
diag�1,1 ,1 ,−1	 together with single-qubit Hadamard gates. For this
specific gate sequence, the Hadamard gates can be pulled out to the
beginning and the end of the sequence.

FIG. 4. The equivalent circuit when errors occur during the
execution of the cPhase gates. The gate operation time and storage
time are denoted tg and ts, respectively. Since the error operators I
and �z now commute with all but the Hadamard gates, the error can
be moved to the end or beginning of the cPhase gates. Hence the
errors on the ancillas can be collected into a single one, simplifying
calculations.
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We can understand the origin of the optimum in the fol-
lowing way: For instantaneous gates tg=0, we recover the
result of Sec. II B where coding is beneficial for all finite
storage times ts. Along the line of zero storage time ts=0,
however, we see there is nothing to be gained from using the
code. This is simply because the logical qubit is only
shielded when it is encoded, i.e., during the storage. For zero
storage time, we are only applying a series of faulty gates,
which of course reduces the fidelity. As ts grows, there is a
competition between these uncorrectable errors and the ben-
eficial effects of the code obtained for any finite ts. As tg
exceeds the limit given in Eq. �23� the positive effects of the
code can however no longer compensate for the uncorrect-
able errors in the gates. Finally, as ts→�, there is no longer
any advantage in using the code and the fidelity approaches
that of the unprotected qubit.

We now consider what happens with the condition given
in Eq. �23� when the code is repeated n times, each run
taking time tc

ge=2tg+ ts. The four probabilities pi
n describing

the state of the qubit after n such cycles obey the equation

�
p1,n

pz,n

px,n

py,n

� =�
p1 pz px py

pz p1 py px

px py p1 pz

py px pz p1

�
n

�Pge
n

�
1

0

0

0
� , �25�

in the basis �� ,�z ,�x ,�y	T. It is useful to express the prob-
abilities pi

n in term of the eigenvalues of the Pge matrix

p1,n =
1

4
�1 + �2

n��1 + �3
n� ,

pz,n =
1

4
�1 + �2

n��1 − �3
n� ,

px,n =
1

4
�1 − �2

n��1 + �3
n� ,

py,n =
1

4
�1 − �2

n��1 − �3
n� , �26�

where the eigenvalues are given by

�1 = 1,

�2 = 1 − 2�px + py� ,

�3 = 1 − 2�pz + py� ,

�4 = �2�3. �27�

From Eq. �26� and the fact that �i�0 for all times, it is clear
that mini pi,n= py,n. The minimum fidelity in Eq. �20� thus
generalizes to the iterative case by replacing p1 with p1,n and
py with py,n. Further the condition for the QECC to be ben-

eficial, Fdiag
min �Fmin, in the iterative case gets the form

p1,n + py,n � p�ntc
ge� , �28�

which equivalently can be expressed as

�3�2 � �2, �29�

where �2=2p�tc
ge�−1 is the eigenvalue �1 of the correspond-

ing P matrix for the case of no error correction. Since Eq.
�29� is n independent it holds for any n. In particular we can
choose n=1 for which it coincides with the condition in Eq.
�23�. Since the code introduces additional errors this result is
not obvious. We had rather expected a case where a combi-
nation of the different probabilities in Eq. �25� would result
in a faster fidelity decay. The main conclusion from this sec-
tion is that the three-qubit QECC can improve the fidelity of
the qubit state, even in the case of errors during gate opera-
tions. In order to benefit from the code, one must however
assure that the normalized gate operation time ��tg can be
made shorter than log 2 /2�0.35. We emphasize that the re-
sults in this section hold for a diagonal qubit coupling only.

IV. COUPLING VIA TUNABLE CAVITY

The system we consider for implementing the QECC is a
set of Cooper-pair box �CPB� qubits27 which are capacitively
connected to a one-dimensional superconducting stripline
cavity. The strong-coupling regime has been achieved ex-
perimentally for this type of mesoscopic cavity-QED
system.24 In this setup, the stripline is terminated with a su-
perconducting quantum interference device �SQUID� whose
effective inductance can be tuned by applying an external
magnetic flux �e. Thus by changing �e one changes the
cavity boundary conditions which leads to a tunable reso-
nance frequency �c��e� of the cavity.22 The Hamiltonian of
the decoupled cavity mode and the CPB qubits read, at the

FIG. 5. �Color online� The difference in fidelities Fdiag
min −Fmin for

the case when errors occur during the gate operations. The region
where Fdiag

min �Fmin is bounded by the outer white line. The black
line shows the optimal storage time ts

opt for a given gate operation
time tg.
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charge degeneracy point, in the qubit eigenbasis

H0 = ��c��e��a†a +
1

2
� − �

i=1

3
EJ,i

2
�z

�i�, �30�

where EJ,i is the Josephson energy of the ith qubit. In the idle
state, the cavity mode is assumed to be far off resonance with
all the qubits, with weak dispersive cavity-qubit coupling
which in the following is considered negligible. Further, to
allow the cavity to address the qubits separately, we assume
the qubits to be separated in frequency space, with

EJ,i−EJ,j
 larger than the qubit-cavity coupling. Tuning the
cavity mode into resonance with a specific qubit �c��e�
=EJ,i, the interaction term obtains the familiar Jaynes-
Cummings form,

Hint,i = i
�gi

2
�a†�−

�i� − a�+
�i�� . �31�

In Ref. 22 it has been shown how to perform the universal
two-qubit cPhase gate using the cavity as a bus mediating the
qubit interaction. The strategy is to tune the oscillator
through resonance with one qubit at a time, performing
	-pulse swaps in every step, and then reverse the sequence.
However, due to the photon number dependence of the
	-pulse swap operation time, T=	 /g�n+1, one has to insert
interference loops in the interaction between qubit 2 and the
oscillator,28 interrupted by idle periods Tn�1 /g where qubit
and cavity are decoupled as shown in Fig. 6.

Note that the oscillator must be tuned adiabatically not to
excite higher oscillator states �̇c /�c��c.

In the implementation of the QECC protocol in Fig. 1,
two consecutive cNOT operations are used. The gate se-
quence for the encoding is equivalent to two consecutive
cPhase gates in addition to single-qubit Hadamard gates, as
shown in Fig. 3. Let us focus on the operation of the cavity
and forget single-qubit gates for the moment since these are
performed independently of the cavity. In the first step of the
cPhase operation, the state of qubit 1 is swapped onto the
oscillator, ��
g�+�
e��
0�→ 
g���
0�+�
1��. During the next
steps the oscillator interacts with qubit 2 in order to create a

phase shift which depends on both the state of the oscillator
and the state of qubit 2. The last step is to swap the oscillator
state back onto qubit 1: 
g���
0�+�
1��→ ��
g�−�
e��
0�
�the minus sign appears because of the form of the interac-
tion term�. When we perform two cPhase gates after each
other, first involving qubits 1 and 2, then involving qubits 1
and 3, it is possible to shorten the sequence. Namely, at the
end of the first cPhase gate the state of the oscillator is trans-
ferred to qubit 1, but then it is immediately transferred back
to the oscillator at the beginning of the second cPhase se-
quence. At the very end, these two operations, 
g���
0�
+�
1��→ ��
g�−�
e��
0�→ 
g���
0�−�
1��, correspond only
to a single-qubit rotation on qubit 1. Thus we can shorten the
encoding protocol by directly tuning the oscillator from qubit
2 to qubit 3, as shown in Fig. 7, and correcting the sign with
an additional diagonal single-qubit gate.

A. Simulating the three qubit+cavity system with dephasing

During the pulse sequence described in the previous sec-
tion, the qubits will interact with each other by entangling
their states with the oscillator. If dephasing is added to this
picture it is no longer tractable to solve the equation of mo-
tion analytically to obtain a solution as that in Eq. �5�. In-
stead we simulate the system dynamics by solving its gov-
erning master equation numerically. This section is divided
into two parts. In the first part we describe how to derive
master equation from a system plus bath interaction. In the
second part we discuss how this equation is implemented
numerically. The major difficulty with the analysis is that the
system Hamiltonian will depend on whether the qubit is on
or off resonance with the cavity. Because of this, we must be
careful when treating the coupling to the bath, which will
have different structure in the energy eigenbasis of the two
different cases. Another difference lies in the fact that we
have introduced an additional quantum system trough the
cavity. This is also subject to dephasing which must be taken
into account. The standard procedure is to couple the cavity
to a heat bath longitudinally through the cavity number
operator.29 Since only one qubit at a time is on resonance
with the cavity, our analysis can, without loss of generality,
be limited to the case of a single qubit plus cavity. The
Hamiltonian for the system plus baths will then be given by

FIG. 6. �Color online� Pulse sequence for performing a control-
phase gate by tuning the frequency of the relevant cavity mode. The
sequence begins and ends with a “swap”—a single photon 	 pulse
while the cavity is on resonance with qubit 1. During the resonance
with qubit 2, single-photon 	 pulses and two-photon 	 pulses are
mixed; the idle periods T3 and T7 in between are chosen to annihi-
late excited photon states, and T5 is chosen to create the nontrivial
phase shift.

FIG. 7. �Color online� Pulse sequence for performing the two
cPhase gates involved in the encoding/decoding protocol. As de-
scribed in the text, one can move the cavity mode directly from
resonance with qubit 2 to qubit 3 without performing the interme-
diate 	 pulses in resonance with qubit 1, thus making the sequence
shorter and easier to implement.
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H = Hsys + �zX + nY + Hbath
X + Hbath

Y , �32�

where the baths are chosen to be a collection of harmonic
oscillators and n=a†a is the cavity number operator. In this
case, X=��i�i�bi+bi

†� and Hbath
X =�i��ibi

†bi with the oscilla-
tor bath defined analogously. The system Hamiltonian Hsys is
given by

Hsys = �H0 = ��c�a†a +
1

2
� −

EJ

2
�z, off resonance

HJC = H0 + i
�g

2
�a†�− − a�+� , on resonance �

�33�

for the idle and resonant periods in the pulse sequence re-
spectively.

1. Dephasing with qubit and cavity on resonance

In this section we show how to derive a master equation
for the reduced density matrix of the qubit plus cavity sys-
tem. For simplicity, we only consider the qubit-bath cou-
pling. The cavity can be treated analogously and we refer to
Appendix A for a detailed analysis. In the idle periods the
system Hamiltonian commutes with the qubit-bath interac-
tion. The situation is thus identical to that described by Eq.
�2� which means that the coupling to the bath results in pure
dephasing in the energy eigenbasis 
g /e ,n�

�g,n;e,m�t� = �mne−��t�g,n;e,m�0� . �34�

When the qubit is moved into resonance with the cavity the
system is described by the JC Hamiltonian whose eigenstates
are the dressed states with corresponding eigenenergies


n; �� =
1
�2

�
g;n� � i
e;n − 1��, En;� = ��n �
�g�n

2
,


g;0�, Eg;0 = 0. �35�

What is important from the point of view of dephasing is that
in the dressed state picture, the longitudinal coupling to the
bath becomes transversal with matrix elements

�0;g
�z
0;g� = 1, �m; �
�z
n; �� = 0,

�0;g
�z
n; �� = 0, �m; �
�z
n; �� = �mn. �36�

Hence in this basis the coupling will not induce pure dephas-
ing, but will instead give rise to relaxation between the
dressed states. We note that this operator is block diagonal
which means that the relaxation will take place within the
blocks of equal n. Within such blocks the system behaves
approximately like a two-level system coupled transversally
to a bath with interaction Hamiltonian H=�xX. Hence, the
diagonal elements of the density matrix will approach equi-
librium exponentially with the relaxation rate 1 /T1 given by
the noise spectral density L��� �see Eq. �3�	, at the relevant
transition frequencies given by �=g�n as can be seen from
Eqs. �35� and �36�. Similarly, coherences formed by super-
positions of states within blocks of equal n will decay expo-

nentially with a rate 1 /T2=1 /2T1. One important difference
between the quasi-two-level systems formed by the dressed
state blocks and a real two-level system is that the relaxation
rates for different blocks will be different due to the nonhar-
monicity of the dressed state energy levels. In addition to
this, coherences formed by superpositions of states between
different blocks will have another set of decay rates. �This
can be seen from the full Liouville equation for the reduced
density matrix, see Eqs. �A1� and �A2�.	 However, we note
that all relevant transition frequencies lie in a range given by
the cavity-qubit coupling g. Thus if we assume that the baths
have no structure on this scale and that the temperature is
much higher than the cavity-qubit coupling kBT��g, we can
safely approximate the noise spectral density in Eq. �3� by its
zero-frequency limit for all relevant transitions. The situation
is similar for the oscillator-bath coupling, for which we make
the same assumptions about the bath. Apart from setting all
the rates equal this approximation has another important im-
plication. Since all rates are taken at zero frequency, they
will be the same for the resonant and off-resonant passages.
With this clearly stated we can derive a master equation in
the Markov approximation for the reduced cavity+qubit den-
sity matrix

�̇ = −
i

�
�Hsys,�	 − ��n2� + �n2 − 2n�n� −

�

2
�� − �z��z� ,

�37�

with the rates � and � given in Appendix A along with a
detailed derivation including the treatment of the oscillator
bath. We emphasize that � and � are basis independent
within our approximation.

2. Numerical approach

To treat Eq. �37� numerically we project it on the instan-
taneous eigenbasis 
i� of Hsys to get it on Redfield form30

�̇ij = − i�ij�ij − �
kl

Rijkl�kl, �38�

where �ij �Ei−Ej� /� is the energy difference between the

eigenstates 
i� and 
j� and R̂ denotes the Redfield tensor

Rijkl =
�

2 �
�=1

3

��ik� jl − �i
�z
���
k��l
�z

�i�
j�	 − ���i
n2
k��lj

+ �ik�l
n2
j� − 2�i
n
k��l
n
j�	 , �39�

where � is the Kronecker delta and the summation � runs
over the number of qubits. Numerically, it is convenient to
work in the Liouvillian space where � is a vector quantity. In
this way, we rewrite Eq. �38� as a matrix equation

�̇�ij	 + i�̂�ij	�ij	��ij	 = �
�kl	

R̂�ij	�kl	��kl	. �40�

The three qubits and oscillator span an 8�N+1�-dimensional
Hilbert space, where N is the number of photons in the reso-
nator. This makes � a column vector of length 64�N+1�2.
The Redfield tensor is a 64�N+1�2�64�N+1�2 matrix and �
is a diagonal matrix of the same size. We work in the eigen-
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basis of the qubit+oscillator Hamiltonian which we obtain
by exact numerical diagonalization. The solution to Eq. �40�
is given by

��t� = e−�i�̂+R̂�t��0�  Û�t���0� , �41�

which can be solved by numerically diagonalizing the propa-

gator Û�t�. In this way we sequentially simulate the entire
pulse sequence with the output density matrix of one passage
serving as the input of the next. In the spirit of the previous
sections all errors occurring during single-qubit operations
are neglected. Hence, we are not concerned with the dynam-
ics of these gates, which consequently are realized as matrix
multiplications. As in the previous sections we use the mini-
mum fidelity as the measure of code performance, which is
obtained by numerically searching the space of initial states.

3. Numerical results

The goal of this section is to show that, for realistic values
of qubit-oscillator coupling, the cavity-mediated cPhase gate
outperforms the diagonal coupling in the limit �→0 when
the oscillator is not damped. This is very encouraging for
future applications, since resonators with lifetimes several
orders of magnitude longer than qubits can be made.31,32

The gate operation time tg is now set by the qubit oscil-
lator coupling and the level splitting of the qubits and oscil-
lator, respectively. From experiments on similar systems we
expect the coupling energy to be in the range g /h
�10–100 MHz �Ref. 2� for all qubits. To get restrictive
results we chose g /h=18 MHz as a typical value. This cor-
responds to a temperature T�0.8 mK, and is thus consistent
with the high-temperature approximation discussed in Sec.
IV A 1. The qubit dephasing rate was set to ��=1 MHz in
all simulations. The qubit energies where taken to be EJ,i /h
=4850, 5000, and 5150 MHz, respectively. The energy sepa-
ration was chosen to match the performance of current state
of the art tunable oscillators in superconducting systems.31,32

The oscillator frequencies in the idle periods were chosen to
be �c /2	=4925 and 5075 MHz, respectively. With these
parameters the gate operation time is given by ��tg=0.26,22

which is in the range where coding improves the fidelity for
the diagonal coupling.

We plot the minimum fidelity normalized to the minimum
no-coding fidelity for several values of the cavity dephasing
rate � in Fig. 8. To compare the two implementations, the
result for the diagonal gate �Eq. �20�	 is plotted in the same
figure �dotted line�. When cavity and qubits are subject to the
same amount of dephasing ��=��, the cavity-mediated cou-
pling cannot match the diagonal. This is however to be ex-
pected since we have introduced an additional uncorrectable
channel of noise through the cavity. It is however interesting
to see that the fidelity can be improved with a modest reduc-
tion in cavity-environment coupling. With a choice of �
=0.75� the two couplings exhibit comparable fidelities as
can be seen in Fig. 8. Further decrease in � improves the
situation even further. If storage times up to ��ts�2 are
considered, the cavity-mediated coupling actually performs

better than the diagonal coupling. We attribute this improve-
ment to the SWAP operations, which transfer the state from
the qubit to the cavity. Given that the cavity is more phase
coherent than the qubit the coherence is thus partially pro-
tected during part of the processing.

V. CONCLUSION

In this paper we have studied the performance of the
three-qubit phase-flip QECC for realistic gates in supercon-
ducting systems. Since such a quantum code requires a lim-
ited amount of qubits for its implementation, it is interesting
from the point of view of superconducting devices, where
such an experiment should be realizable in the near future.
We have studied two explicit couplings, one diagonal and
one cavity mediated.

Our analysis begin with the case of ideal gates, where no
gate errors occur during processing. In this case, we show
that coding is beneficial, not only in the short-time limit, but
can also significantly reduce the dephasing rate when consid-
ering realistic experimental parameters. We move on to con-
sider realistic gates, deriving analytical expressions for the
fidelity in the case where the qubits are coupled in diagonal
fashion. We found an upper limit on the gate operation time
tg allowed to benefit from coding. For the cavity-mediated
coupling, we study the system numerically, solving the mas-
ter equation that describes dephasing in the qubits and cavity.
For realistic values of cavity-qubit coupling we find that the
fidelity is comparable to that of the much simpler diagonal
coupling. In the limit of weak coupling between the environ-
ment and cavity, this coupling even outperforms the diagonal
one. We attribute this effect to the transfer of coherence from
the qubit to the cavity, where it is protected during part of the
pulse sequence. In view of the high Q values demonstrated
for stripline cavities, this is promising for future applications.
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FIG. 8. �Color online� The ratio Fcav
min /Fmin �solid lines� for dif-

ferent values of oscillator-environment coupling �. The ratio
Fdiag

min /Fmin is plotted �dashed line� for comparison. Using the mini-
mum fidelity as measure, the two gates are comparable for �
�0.75�.
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APPENDIX A: DERIVATION OF THE MASTER
EQUATION

The cavity plus qubit system with dephasing is modeled
by coupling its constituents longitudinally to a thermal bath
so that the Hamiltonian for the full system plus bath is given
by Eq. �32�. In the Markov approximation, it is possible to
derive an equation of motion for the reduced cavity plus
qubit density matrix. To second order in the couplings �i this
equation reads

�̇ij = − i�ij�ij + Lij
n,Y��� + Lij

�z,X��� , �A1�

where �ij �Ei−Ej� /� is the energy difference between the
eigenstates 
i� and 
j� of Hsys. The dissipative dynamics is
governed by L��� whose matrix elements are given by

Lij
o,Q��� = �

kl

oik�klolj�LQ
� �� jl� + LQ��ik�	 − oikokl�ljLQ��kl�

− �ikokloljLQ
� ��lk� , �A2�

where o is the system operator that couples to the bath and
L��� is the Laplace transform of the bath correlator

LQ��� = �
0

�

d�e−i���Q���Q�0�� . �A3�

For the case of a bath in thermal equilibrium, the real part of
LQ, which determines the transition rates will be given by
Eq. �3�. The imaginary part of LQ is responsible for a small
energy shift �Lamb shift� of the energy levels. Hence it will
not be relevant for any pure phase damping, which is the
central interest from the point of view of error correction.
This effect will therefore be disregarded in the following

analysis. The relevant transition frequencies �ij will be de-
termined by the matrix elements of �z and n, respectively.
We must therefore separate our analysis into two cases: the
resonant and the off-resonant periods in the pulse sequence
described in Sec. IV. In the off-resonant case, the eigenstates
of the system are the product states 
g /e ,n� for which both n
and �z are diagonal. This leaves us with only one relevant
transition frequency �ij =0. When the qubit and cavity are on
resonance, the eigenstates of the system are the dressed states
of the Jaynes-Cummings Hamiltonian


n; �� =
1
�2

�
g;n� � i
e;n − 1�� , �A4�

for which the matrix elements of n and �z reads

�m; �
�z
n; �� = 0,

�m; �
�z
n; �� = �mn,

�m; �
n
n; �� = �n −
1

2
��mn,

�m; �
n
n; �� =
1

2
�mn. �A5�

In this case we get three relevant frequencies �n�,n�

= �g�n and �n�,n�=0. We now assume that the baths have
no structure on the scale of the qubit-cavity coupling. We
further assume the temperature to be much higher than the
cavity-qubit coupling kBT��g. In this case we may safely
approximate Re LQ��g�n��Re LQ�0� and conclude that the
only relevant parameter for dissipation will be LQ�0�, for
both the resonant and off-resonant regimes. With this clearly
stated we can, from Eq. �A1�, write down the master equa-
tion for the system dynamics as given in Eq. �37� with the
rates � and � given by �=4 Re LX�0� and �=Re LY�0� inde-
pendently of the choice of Hsys. These are the dephasing rates
for the bare qubit and cavity systems, respectively.
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