2,186 research outputs found

    Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics

    Get PDF
    Thieno[3,2-b]thienobis(silolothiophene), a new electron rich hexacyclic monomer has been synthesized and incorporated into three novel donor–acceptor low-bandgap polymers. By carefully choosing the acceptor co-monomer, the energy levels of the polymers could be modulated and high power conversion efficiencies of 5.52% were reached in OPV devices

    CACNA1C hypermethylation is associated with bipolar disorder

    Get PDF
    The CACNA1C gene, encoding a subunit of the L-type voltage-gated calcium channel is one of the best-supported susceptibility genes for bipolar disorder (BD). Genome-wide association studies have identified a cluster of non-coding single-nucleotide polymorphisms (SNPs) in intron 3 to be highly associated with BD and schizophrenia. The mechanism by which these SNPs confer risk of BD appears to be through an altered regulation of CACNA1C expression. The role of CACNA1C DNA methylation in BD has not yet been addressed. The aim of this study was to investigate if CACNA1C DNA methylation is altered in BD. First, the methylation status of five CpG islands (CGIs) across CACNA1C in blood from BD subjects (n=40) and healthy controls (n=38) was determined. Four islands were almost completely methylated or completely unmethylated, while one island (CGI 3) in intron 3 displayed intermediate methylation levels. In the main analysis, the methylation status of CGI 3 was analyzed in a larger sample of BD subjects (n=582) and control individuals (n=319). Out of six CpG sites that were investigated, five sites showed significant hypermethylation in cases (lowest P=1.16 × 10(-7) for CpG35). Nearby SNPs were found to influence the methylation level, and we identified rs2238056 in intron 3 as the strongest methylation quantitative trait locus (P=2.6 × 10(-7)) for CpG35. In addition, we found an increased methylation in females, and no difference between bipolar I and II. In conclusion, we find that CACNA1C methylation is associated with BD and suggest that the regulatory effect of the non-coding risk variants involves a shift in DNA methylation

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    International evidence-based medicine survey of the veterinary profession: information sources used by veterinarians

    Get PDF
    Veterinarians are encouraged to use evidence to inform their practice, but it is unknown what resources (e.g. journals, electronic sources) are accessed by them globally. Understanding the key places veterinarians seek information can inform where new clinically relevant evidence should most effectively be placed. An international survey was conducted to gain understanding of how veterinary information is accessed by veterinarians worldwide. There were 2137 useable responses to the questionnaire from veterinarians in 78 countries. The majority of respondents (n = 1835/2137, 85.9%) undertook clinical work and worked in a high income country (n = 1576/1762, 89.4%). Respondents heard about the survey via national veterinary organisations or regulatory bodies (31.5%), online veterinary forums and websites (22.7%), regional, discipline-based or international veterinary organisations (22.7%) or by direct invitation from the researchers or via friends, colleagues or social media (7.6%). Clinicians and non-clinicians reportedly used journals most commonly (65.8%, n = 1207/1835; 75.6%, n = 216/286) followed by electronic resources (58.7%, n = 1077/1835; 55.9%, n = 160/286), respectively. Respondents listed a total of 518 journals and 567 electronic sources that they read. Differences in veterinarian preference for resources in developed, and developing countries, were found. The nominated journals most read were the Journal of the American Veterinary Medical Association (12.7% of nominations) for clinicians and the Veterinary Record (5.7%) for non-clinicians. The most accessed electronic resource reported was the Veterinary Information Network (25.6%) for clinicians and PubMed (7.4%) for non-clinicians. In conclusion, a wide array of journals and electronic resources appear to be accessed by veterinarians worldwide. Veterinary organisations appear to play an important role in global communication and outreach to veterinarians and consideration should be given to how these channels could be best utilised for effective dissemination of key research findings

    Adding control to arbitrary unknown quantum operations

    Get PDF
    While quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations-a requirement in many quantum algorithms, simulations and metrology. The technique is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. We demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity.Comment: 9 pages, 8 figure

    Generation of Three-Qubit Entangled States using Superconducting Phase Qubits

    Full text link
    Entanglement is one of the key resources required for quantum computation, so experimentally creating and measuring entangled states is of crucial importance in the various physical implementations of a quantum computer. In superconducting qubits, two-qubit entangled states have been demonstrated and used to show violations of Bell's Inequality and to implement simple quantum algorithms. Unlike the two-qubit case, however, where all maximally-entangled two-qubit states are equivalent up to local changes of basis, three qubits can be entangled in two fundamentally different ways, typified by the states GHZ>=(000>+111>)/2|\mathrm{GHZ}> = (|000> + |111>)/\sqrt{2} and W>=(001>+010>+100>)/3|\mathrm{W}> = (|001> + |010> + |100>)/\sqrt{3}. Here we demonstrate the operation of three coupled superconducting phase qubits and use them to create and measure GHZ>|\mathrm{GHZ}> and W>|\mathrm{W}> states. The states are fully characterized using quantum state tomography and are shown to satisfy entanglement witnesses, confirming that they are indeed examples of three-qubit entanglement and are not separable into mixtures of two-qubit entanglement.Comment: 9 pages, 5 figures. Version 2: added supplementary information and fixed image distortion in Figure 2

    Demonstration of entanglement-by-measurement of solid state qubits

    Full text link
    Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measurement of a joint property such as qubit parity. These joint measurements do not require a direct interaction between qubits and therefore provide a unique resource for quantum information processing with well-isolated qubits. Numerous schemes for entanglement-by-measurement of solid-state qubits have been proposed, but the demanding experimental requirements have so far hindered implementations. Here we realize a two-qubit parity measurement on nuclear spins in diamond by exploiting the electron spin of a nitrogen-vacancy center as readout ancilla. The measurement enables us to project the initially uncorrelated nuclear spins into maximally entangled states. By combining this entanglement with high-fidelity single-shot readout we demonstrate the first violation of Bells inequality with solid-state spins. These results open the door to a new class of experiments in which projective measurements are used to create, protect and manipulate entanglement between solid-state qubits.Comment: 6 pages, 4 figure

    From quantum fusiliers to high-performance networks

    Full text link
    Our objective was to design a quantum repeater capable of achieving one million entangled pairs per second over a distance of 1000km. We failed, but not by much. In this letter we will describe the series of developments that permitted us to approach our goal. We will describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. This mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how this may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The creation rate is shown to be a function of the maximum distance between two adjacent quantum repeaters.Comment: 2 figures, Comments welcom

    Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles.</p> <p>Results</p> <p>The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors.</p> <p>Conclusion</p> <p>The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (<it>NetMHCII</it>) are made publicly available.</p
    corecore