28,902 research outputs found

    The mechanical behavior of tantalum carbide and magnesium oxide

    Get PDF
    Mechanical behavior of tantalum carbide and magnesium oxide polycrystalline ceramic

    Ginsparg-Wilson Relation and Ultralocality

    Full text link
    It is shown that it is impossible to construct a free theory of fermions on infinite hypercubic Euclidean lattice in four dimensions that is: (a) ultralocal, (b) respects symmetries of hypercubic lattice, (c) corresponding kernel satisfies D gamma5 + gamma5 D = D gamma5 D (Ginsparg-Wilson relation), (d) describes single species of massless Dirac fermions in the continuum limit.Comment: 4 pages, REVTEX; few minor change

    Maintaining Quantum Coherence in the Presence of Noise through State Monitoring

    Full text link
    Unsharp POVM measurements allow the estimation and tracking of quantum wavefunctions in real-time with minimal disruption of the dynamics. Here we demonstrate that high fidelity state monitoring, and hence quantum control, is possible even in the presence of classical dephasing and amplitude noise, by simulating such measurements on a two-level system undergoing Rabi oscillations. Finite estimation fidelity is found to persist indefinitely long after the decoherence times set by the noise fields in the absence of measurement.Comment: 5 pages, 4 figure

    Anomalous slow fidelity decay for symmetry breaking perturbations

    Full text link
    Symmetries as well as other special conditions can cause anomalous slowing down of fidelity decay. These situations will be characterized, and a family of random matrix models to emulate them generically presented. An analytic solution based on exponentiated linear response will be given. For one representative case the exact solution is obtained from a supersymmetric calculation. The results agree well with dynamical calculations for a kicked top.Comment: 4 pages, 2 figure

    Chiral symmetry restoration and axial vector renormalization for Wilson fermions

    Full text link
    Lattice gauge theories with Wilson fermions break chiral symmetry. In the U(1) axial vector current this manifests itself in the anomaly. On the other hand it is generally expected that the axial vector flavour mixing current is non-anomalous. We give a short, but strict proof of this to all orders of perturbation theory, and show that chiral symmetry restauration implies a unique multiplicative renormalization constant for the current. This constant is determined entirely from an irrelevant operator in the Ward identity. The basic ingredients going into the proof are the lattice Ward identity, charge conjugation symmetry and the power counting theorem. We compute the renormalization constant to one loop order. It is largely independent of the particular lattice realization of the current.Comment: 11 pages, Latex2

    The effect of grain boundaries on mechanical behavior in polycrystalline ceramics

    Get PDF
    Atomic structure and chemical composition influence on grain boundaries effect on mechanical failure in polycrystalline ceramic

    Optical observations of the AMPTE artificial comet and magnetotail barium releases

    Get PDF
    The first AMPTE artificial comet was observed with a low light level television camera operated aboard the NASA CV990 flying out of Moffett Field, California. The comet head, neutral cloud, and comet tail were all observed for four minutes with an unifiltered camera. Brief observations at T + 4 minutes through a 4554A Ba(+) filter confirmed the identification of the structures. The ion cloud expanded along with the neutral cloud at a rate of 2.3 km/sec (diameter) until it reached a final diameter of approx. 170 km at approx. T + 90 s. It also drifted with the neutral cloud until approx. 165 s. By T + 190 s it had reached a steady state velocity of 5.4 km/sec southward. A barium release in the magnetotail was observed from the CV990 in California, Eagle, Alaska, and Fairbanks, Alaska. Over a twenty-five minute period, the center of the barium streak drifted southward (approx. 500 m/sec), upward (24 km/sec) and eastward (approx 1 km/sec) in a nonrotating reference frame. An all-sky TV at Eagle showed a single auroral arc in the far North during this period

    Entanglement invariant for the double Jaynes-Cummings model

    Full text link
    We study entanglement dynamics between four qubits interacting through two isolated Jaynes-Cummings hamiltonians, via the entanglement measure based on the wedge product. We compare the results with similar results obtained using bipartite concurrence resulting in what is referred to as "entanglement sudden death". We find a natural entanglement invariant under evolution demonstrating that entanglement sudden death is caused by ignoring (tracing over) some of the system's degrees of freedom that become entangled through the interaction.Comment: Sec. V has largely been rewritten. An error pertaining to the entanglement invariant has been corrected and a correct invariant valid for a much larger set of states have been found, Eq. (25

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe
    corecore