23,470 research outputs found

    Transition from Icosahedral to Decahedral Structure in a Coexisting Solid-Liquid Nickel Cluster

    Full text link
    We have used molecular dynamics simulations to construct a microcanonical caloric curve for a 1415-atom Ni icosahedron. Prior to melting the Ni cluster exhibits static solid-liquid phase coexistence. Initially a partial icosahedral structure coexists with a non-wetting melt. However at energies very close to the melting point the icosahedral structure is replaced by a truncated decahedral structure which is almost fully wet by the melt. This structure remains until the cluster fully melts. The transition appears to be driven by a preference for the melt to wet the decahedral structure.Comment: 7 pages, 6 figure

    Hadronic form factors and the J/ψJ/\psi secondary production cross section: an update

    Full text link
    Improving previous calculations, we compute the D+Dˉ→J/ψ+πD + \bar{D} \to J/\psi + \pi cross section using the most complete effective lagrangians available. The new crucial ingredients are the form factors on the charm meson vertices, which are determined from QCD sum rules calculations. Some of them became available only very recently and the last one, needed for our present purpose, is calculated in this work.Comment: 12 pages, 9 eps figure

    Does the D−/D+D^-/D^+ production asymmetry decrease at large xFx_F?

    Get PDF
    We have applied the meson cloud model (MCM) to calculate the asymmetries in DD and DsD_s meson production in high energy Σ−\Sigma^--nucleus and π−\pi^--nucleus collisions. We find a good agreement with recent data. Our results suggest that the asymmetries may decrease at large xFx_F.Comment: revised version with new figures and added references to appear in Phys. Rev. Let

    Option Pricing in Multivariate Stochastic Volatility Models of OU Type

    Full text link
    We present a multivariate stochastic volatility model with leverage, which is flexible enough to recapture the individual dynamics as well as the interdependencies between several assets while still being highly analytically tractable. First we derive the characteristic function and give conditions that ensure its analyticity and absolute integrability in some open complex strip around zero. Therefore we can use Fourier methods to compute the prices of multi-asset options efficiently. To show the applicability of our results, we propose a concrete specification, the OU-Wishart model, where the dynamics of each individual asset coincide with the popular Gamma-OU BNS model. This model can be well calibrated to market prices, which we illustrate with an example using options on the exchange rates of some major currencies. Finally, we show that covariance swaps can also be priced in closed form.Comment: 28 pages, 5 figures, to appear in SIAM Journal on Financial Mathematic

    Cavity-mediated long-range interaction for fast multiqubit quantum logic operations

    Get PDF
    Interactions among qubits are essential for performing two-qubit quantum logic operations. However, nature gives us only nearest neighbor interactions in simple and controllable settings. Here we propose a strategy to induce interactions among two atomic entities that are not necessarily neighbors of each other through their common coupling with a cavity field. This facilitates fast multiqubit quantum logic operations through a set of two-qubit operations. The ideas presented here are applicable to various quantum computing proposals for atom based qubits such as, trapped ions, atoms trapped in optical cavities and optical lattices.Comment: 10 pages, 3 figure

    Meson Cloud and SU(3) Symmetry Breaking in Parton Distributions

    Get PDF
    We apply the Meson Cloud Model to the calculation of nonsinglet parton distributions in the nucleon sea, including the octet and the decuplet cloud baryon contributions. We give special attention to the differences between nonstrange and strange sea quarks, trying to identify possible sources of SU(3) flavor breaking. A analysis in terms of the κ\kappa parameter is presented, and we find that the existing SU(3) flavor asymmetry in the nucleon sea can be quantitatively explained by the meson cloud. We also consider the Σ+\Sigma^+ baryon, finding similar conclusions.Comment: 17 pages, LaTeX, 8 figures in .ps file

    Application of asymptotic expansions of maximum likelihood estimators errors to gravitational waves from binary mergers: the single interferometer case

    Get PDF
    In this paper we describe a new methodology to calculate analytically the error for a maximum likelihood estimate (MLE) for physical parameters from Gravitational wave signals. All the existing litterature focuses on the usage of the Cramer Rao Lower bounds (CRLB) as a mean to approximate the errors for large signal to noise ratios. We show here how the variance and the bias of a MLE estimate can be expressed instead in inverse powers of the signal to noise ratios where the first order in the variance expansion is the CRLB. As an application we compute the second order of the variance and bias for MLE of physical parameters from the inspiral phase of binary mergers and for noises of gravitational wave interferometers . We also compare the improved error estimate with existing numerical estimates. The value of the second order of the variance expansions allows to get error predictions closer to what is observed in numerical simulations. It also predicts correctly the necessary SNR to approximate the error with the CRLB and provides new insight on the relationship between waveform properties SNR and estimation errors. For example the timing match filtering becomes optimal only if the SNR is larger than the kurtosis of the gravitational wave spectrum

    Chromoelectric fields and quarkonium-hadron interactions at high energies

    Full text link
    We develop a simple model to study the heavy quarkonium-hadron cross section in the high energy limit. The hadron is represented by an external electric color field (capacitor) and the heavy quarkonium is represented by a small color dipole. Using high energy approximations we compute the relevant cross sections, which are then compared with results obtained with other methods. Our calculations are presented in a pedagogical way accessible to undergraduate students.Comment: To appear in Physical Review C, 24 pages, 10 eps figure
    • …
    corecore