998 research outputs found

    Model study on steady heat capacity in driven stochastic systems

    Full text link
    We explore two- and three-state Markov models driven out of thermal equilibrium by non-potential forces to demonstrate basic properties of the steady heat capacity based on the concept of quasistatic excess heat. It is shown that large enough driving forces can make the steady heat capacity negative. For both the low- and high-temperature regimes we propose an approximative thermodynamic scheme in terms of "dynamically renormalized" effective energy levels.Comment: 10 pages, 7 figures, 1 tabl

    Implementation of Conditional Phase Shift gate for Quantum Information Processing by NMR, using Transition-selective pulses

    Full text link
    Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well established. Implementation of conditional phase shift gate has been a significant step, which has lead to realization of important algorithms such as Grover's search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by using coupling evolution method. We demonstrate here the implementation of the conditional phase shift gate using transition selective pulses. As an application of the gate, we demonstrate Grover's search algorithm and quantum Fourier transform by simulations and experiments using transition selective pulses.Comment: 14 pages, 5 figure

    Short-term Wind Power Forecasting Using Advanced Statistical Methods

    No full text
    Disponible sur : http://anemos.cma.fr/download/publications/pub_2006_paper_EWEC06_WP3statistical.pdfInternational audienceThis paper describes some of the statistical methods considered in the ANEMOS project for short-termforecasting of wind power. The total procedure typically involves various steps, and all these steps are described in the paper. These steps include downscaling from reference MET forecasts to the actual wind farm, wind farm power curve models, dynamical models for prediction of wind power or wind speed, estimating the uncertainty of the wind power forecast, and finally, methods for upscaling are considered. The upscaling part considers how a total regional production can be estimated using a small number of reference wind farms. Keywords: Forecasting, power curve, wind farmpower curve, upscaling, uncertainty estimation, probabilistic forecasts, adaptation

    Local channels preserving maximal entanglement or Schmidt number

    Full text link
    Maximal entanglement and Schmidt number play an important role in various quantum information tasks. In this paper, it is shown that a local channel preserves maximal entanglement state(MES) or preserves pure states with Schmidt number rr(rr is a fixed integer) if and only if it is a local unitary operation.Comment: 10 page

    Evaluation of Advanced Wind Power Forecasting Models – Results of the Anemos Project

    No full text
    Disponible : http://www.ewec2006proceedings.info/allfiles2/969_Ewec2006fullpaper.pdfInternational audienceAn outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper presents results of the first ever intercomparison of a number of advanced prediction systems performed in the frame of the European project Anemos. A framework for error characterization has been developed consisting by a measure- and a distribution-oriented approach. This comparison has given a perspective of the possibilities and limitations of the forecasts in the different test cases that were defined. At a second stage, the homogenous comparison process has permitted to evaluate the possibility of obtaining better performance by exploiting the merits of individual models through model combination. The paper presents the methodology and results from the combination approach

    Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV

    Full text link
    Charged-particle pseudorapidity densities are presented for the d+Au reaction at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and 60-80% centrality classes. Models incorporating both soft physics and hard, perturbative QCD-based scattering physics agree well with the experimental results. The data do not support predictions based on strong-coupling, semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4 GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80% centrality range; added additional discussion on centrality selection bia
    corecore