1,175 research outputs found

    MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context

    Get PDF
    To address how eukaryotic replication forks respond to fork stalling caused by strong non-covalent protein–DNA barriers, we engineered the controllable Fob-block system in Saccharomyces cerevisiae. This system allows us to strongly induce and control replication fork barriers (RFB) at their natural location within the rDNA. We discover a pivotal role for the MRX (Mre11, Rad50, Xrs2) complex for fork integrity at RFBs, which differs from its acknowledged function in double-strand break processing. Consequently, in the absence of the MRX complex, single-stranded DNA (ssDNA) accumulates at the rDNA. Based on this, we propose a model where the MRX complex specifically protects stalled forks at protein–DNA barriers, and its absence leads to processing resulting in ssDNA. To our surprise, this ssDNA does not trigger a checkpoint response. Intriguingly, however, placing RFBs ectopically on chromosome VI provokes a strong Rad53 checkpoint activation in the absence of Mre11. We demonstrate that proper checkpoint signalling within the rDNA is restored on deletion of SIR2. This suggests the surprising and novel concept that chromatin is an important player in checkpoint signalling

    Genomic investigation of etiologic heterogeneity: methodologic challenges

    Get PDF
    Background: The etiologic heterogeneity of cancer has traditionally been investigated by comparing risk factor frequencies within candidate sub-types, defined for example by histology or by distinct tumor markers of interest. Increasingly tumors are being profiled for molecular features much more extensively. This greatly expands the opportunities for defining distinct sub-types. In this article we describe an exploratory analysis of the etiologic heterogeneity of clear cell kidney cancer. Data are available on the primary known risk factors for kidney cancer, while the tumors are characterized on a genome-wide basis using expression, methylation, copy number and mutational profiles. Methods: We use a novel clustering strategy to identify sub-types. This is accomplished independently for the expression, methylation and copy number profiles. The goals are to identify tumor sub-types that are etiologically distinct, to identify the risk factors that define specific sub-types, and to endeavor to characterize the key genes that appear to represent the principal features of the distinct sub-types. Results: The analysis reveals strong evidence that gender represents an important factor that distinguishes disease sub-types. The sub-types defined using expression data and methylation data demonstrate considerable congruence and are also clearly correlated with mutations in important cancer genes. These sub-types are also strongly correlated with survival. The complexity of the data presents many analytical challenges including, prominently, the risk of false discovery. Conclusions: Genomic profiling of tumors offers the opportunity to identify etiologically distinct sub-types, paving the way for a more refined understanding of cancer etiology. Electronic supplementary material The online version of this article (doi:10.1186/1471-2288-14-138) contains supplementary material, which is available to authorized users

    RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest.</p> <p>Results</p> <p>In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape.</p> <p>Conclusion</p> <p>The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.</p

    Atrial fibrillatory rate as predictor of recurrence of atrial fibrillation in horses treated medically or with electrical cardioversion

    Get PDF
    Background The recurrence rate of atrial fibrillation (AF) in horses after cardioversion to sinus rhythm (SR) is relatively high. Atrial fibrillatory rate (AFR) derived from surface ECG is considered a biomarker for electrical remodelling and could potentially be used for the prediction of successful AF cardioversion and AF recurrence. Objectives Evaluate if AFR was associated with successful treatment and could predict AF recurrence in horses. Study design Retrospective multicentre study. Methods Electrocardiograms (ECG) from horses with persistent AF admitted for cardioversion with either medical treatment (quinidine) or transvenous electrical cardioversion (TVEC) were included. Bipolar surface ECG recordings were analysed by spatiotemporal cancellation of QRST complexes and calculation of AFR from the remaining atrial signal. Kaplan-Meier survival curve and Cox regression analyses were performed to assess the relationship between AFR and the risk of AF recurrence. Results Of the 195 horses included, 74 received quinidine treatment and 121 were treated with TVEC. Ten horses did not cardiovert to SR after quinidine treatment and AFR was higher in these, compared with the horses that successfully cardioverted to SR (median [interquartile range]), (383 [367-422] vs 351 [332-389] fibrillations per minute (fpm), P < .01). Within the first 180 days following AF cardioversion, 12% of the quinidine and 34% of TVEC horses had AF recurrence. For the horses successfully cardioverted with TVEC, AFR above 380 fpm was significantly associated with AF recurrence (hazard ratio = 2.4, 95% confidence interval 1.2-4.8, P = .01). Main limitations The treatment groups were different and not randomly allocated, therefore the two treatments cannot be compared. Medical records and the follow-up strategy varied between the centres. Conclusions High AFR is associated with failure of quinidine cardioversion and AF recurrence after successful TVEC. As a noninvasive marker that can be retrieved from surface ECG, AFR can be clinically useful in predicting the probability of responding to quinidine treatment as well as maintaining SR after electrical cardioversion

    Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release

    Get PDF
    Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed
    corecore