649 research outputs found

    Three-body problem in Fermi gases with short-range interparticle interaction

    Full text link
    We discuss 3-body processes in ultracold two-component Fermi gases with short-range intercomponent interaction characterized by a large and positive scattering length aa. It is found that in most cases the probability of 3-body recombination is a universal function of the mass ratio and aa, and is independent of short-range physics. We also calculate the scattering length corresponding to the atom-dimer interaction.Comment: 4 pages, 2 figure

    Universal Equation for Efimov States

    Full text link
    Efimov states are a sequence of shallow 3-body bound states that arise when the 2-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a 3-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of 4He atoms. We also extend Efimov's theory to include the effects of deep 2-body bound states, which give widths to the Efimov states.Comment: 8 pages, revtex4, 2 ps figures, table with numerical values of universal function adde

    Universality in the Three-Body Problem for 4He Atoms

    Full text link
    The two-body scattering length a for 4He atoms is much larger than their effective range r_s. As a consequence, low-energy few-body observables have universal characteristics that are independent of the interaction potential. Universality implies that, up to corrections suppressed by r_s/a, all low-energy three-body observables are determined by a and a three-body parameter \Lambda_*. We give simple expressions in terms of a and \Lambda_* for the trimer binding energy equation, the atom-dimer scattering phase shifts, and the rate for three-body recombination at threshold. We determine \Lambda_* for several 4He potentials from the calculated binding energy of the excited state of the trimer and use it to obtain the universality predictions for the other low-energy observables. We also use the calculated values for one potential to estimate the effective range corrections for the other potentials.Comment: 23 pages, revtex4, 6 ps figures, references added, universal expressions update

    Correlated N-boson systems for arbitrary scattering length

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations and attractive finite-range potentials. We use a hyperspherical adiabatic method and apply a Faddeev type of decomposition of the wave function. We discuss the structure of a condensate as function of particle number and scattering length. We establish universal scaling relations for the critical effective radial potentials for distances where the average distance between particle pairs is larger than the interaction range. The correlations in the wave function restore the large distance mean-field behaviour with the correct two-body interaction. We discuss various processes limiting the stability of condensates. With correlations we confirm that macroscopic tunneling dominates when the trap length is about half of the particle number times the scattering length.Comment: 15 pages (RevTeX4), 11 figures (LaTeX), submitted to Phys. Rev. A. Second version includes an explicit comparison to N=3, a restructured manuscript, and updated figure

    Low-Energy Universality in Atomic and Nuclear Physics

    Full text link
    An effective field theory developed for systems interacting through short-range interactions can be applied to systems of cold atoms with a large scattering length and to nucleons at low energies. It is therefore the ideal tool to analyze the universal properties associated with the Efimov effect in three- and four-body systems. In this "progress report", we will discuss recent results obtained within this framework and report on progress regarding the inclusion of higher order corrections associated with the finite range of the underlying interaction.Comment: Commissioned article for Few-Body Systems, 47 pp, 16 fig

    Weakly bound atomic trimers in ultracold traps

    Full text link
    The experimental three-atom recombination coefficients of the atomic states 23^{23}NaF=1,mF=1>|F=1,m_F=-1>, 87^{87}RbF=1,mF=1>|F=1,m_F=-1> and 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, together with the corresponding two-body scattering lengths, allow predictions of the trimer bound state energies for such systems in a trap. The recombination parameter is given as a function of the weakly bound trimer energies, which are in the interval 1<m(a/)2E3<6.9 1<m(a/\hbar)^2 E_3< 6.9 for large positive scattering lengths, aa. The contribution of a deep-bound state to our prediction, in the case of 85^{85}RbF=2,mF=2>|F=2,m_F=-2>, for a particular trap, is shown to be relatively small.Comment: 5 pages, 1 figur

    The helium trimer with soft-core potentials

    Get PDF
    The helium trimer is studied using two- and three-body soft-core potentials. Realistic helium-helium potentials present an extremely strong short-range repulsion and support a single, very shallow, bound state. The description of systems with more than two helium atoms is difficult due to the very large cancellation between kinetic and potential energy. We analyze the possibility of describing the three helium system in the ultracold regime using a gaussian representation of a widely used realistic potential, the LM2M2 interaction. However, in order to describe correctly the trimer ground state a three-body force has to be added to the gaussian interaction. With this potential model the two bound states of the trimer and the low energy scattering helium-dimer phase shifts obtained with the LM2M2 potential are well reproduced.Comment: 15 pages, 3 figures, submitted to Few-Body System

    Spin-dependent effective interactions for halo nuclei

    Get PDF
    We discuss the spin-dependence of the effective two-body interactions appropriate for three-body computations. The only reasonable choice seems to be the fine and hyperfine interactions known for atomic electrons interacting with the nucleus. One exception is the nucleon-nucleon interaction imposing a different type of symmetry. We use the two-neutron halo nucleus 11Li as illustration. We demonstrate that models with the wrong spin-dependence are basically without predictive power. The Pauli forbidden core and valence states must be consistently treated.Comment: TeX file, 6 pages, 3 postscript figure

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic

    Radiating black hole solutions in arbitrary dimensions

    Full text link
    We prove a theorem that characterizes a large family of non-static solutions to Einstein equations in NN-dimensional space-time, representing, in general, spherically symmetric Type II fluid. It is shown that the best known Vaidya-based (radiating) black hole solutions to Einstein equations, in both four dimensions (4D) and higher dimensions (HD), are particular cases from this family. The spherically symmetric static black hole solutions for Type I fluid can also be retrieved. A brief discussion on the energy conditions, singularities and horizons is provided.Comment: RevTeX 9 pages, no figure
    corecore