12,565 research outputs found

    Self-shrinkers with a rotational symmetry

    Full text link
    In this paper we present a new family of non-compact properly embedded, self-shrinking, asymptotically conical, positive mean curvature ends Σn⊆Rn+1\Sigma^n\subseteq\mathbb{R}^{n+1} that are hypersurfaces of revolution with circular boundaries. These hypersurface families interpolate between the plane and half-cylinder in Rn+1\mathbb{R}^{n+1}, and any rotationally symmetric self-shrinking non-compact end belongs to our family. The proofs involve the global analysis of a cubic-derivative quasi-linear ODE. We also prove the following classification result: a given complete, embedded, self-shrinking hypersurface of revolution Σn\Sigma^n is either a hyperplane Rn\mathbb{R}^{n}, the round cylinder R×Sn−1\mathbb{R}\times S^{n-1} of radius 2(n−1)\sqrt{2(n-1)}, the round sphere SnS^n of radius 2n\sqrt{2n}, or is diffeomorphic to an S1×Sn−1S^1\times S^{n-1} (i.e. a "doughnut" as in [Ang], which when n=2n=2 is a torus). In particular for self-shrinkers there is no direct analogue of the Delaunay unduloid family. The proof of the classification uses translation and rotation of pieces, replacing the method of moving planes in the absence of isometries.Comment: Trans. Amer. Math. Soc. (2011), to appear; 23 pages, 1 figur

    Exceptional Laguerre polynomials

    Full text link
    The aim of this paper is to present the construction of exceptional Laguerre polynomials in a systematic way, and to provide new asymptotic results on the location of the zeros. To describe the exceptional Laguerre polynomials we associate them with two partitions. We find that the use of partitions is an elegant way to express these polynomials and we restate some of their known properties in terms of partitions. We discuss the asymptotic behavior of the regular zeros and the exceptional zeros of exceptional Laguerre polynomials as the degree tends to infinity.Comment: To appear in Studies in Applied Mathematic

    Phase Space Reduction of Star Products on Cotangent Bundles

    Full text link
    In this paper we construct star products on Marsden-Weinstein reduced spaces in case both the original phase space and the reduced phase space are (symplectomorphic to) cotangent bundles. Under the assumption that the original cotangent bundle T∗QT^*Q carries a symplectique structure of form ωB0=ω0+π∗B0\omega_{B_0}=\omega_0 + \pi^*B_0 with B0B_0 a closed two-form on QQ, is equipped by the cotangent lift of a proper and free Lie group action on QQ and by an invariant star product that admits a GG-equivariant quantum momentum map, we show that the reduced phase space inherits from T∗QT^*Q a star product. Moreover, we provide a concrete description of the resulting star product in terms of the initial star product on T∗QT^*Q and prove that our reduction scheme is independent of the characteristic class of the initial star product. Unlike other existing reduction schemes we are thus able to reduce not only strongly invariant star products. Furthermore in this article, we establish a relation between the characteristic class of the original star product and the characteristic class of the reduced star product and provide a classification up to GG-equivalence of those star products on (T∗Q,ωB0)(T^*Q,\omega_{B_0}), which are invariant with respect to a lifted Lie group action. Finally, we investigate the question under which circumstances `quantization commutes with reduction' and show that in our examples non-trivial restrictions arise

    The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces.

    Get PDF
    Very few Banach spaces E are known for which the lattice of closed ideals in the Banach algebra of all (bounded, linear) operators on E is fully understood. Indeed, up to now the only such Banach spaces are, up to isomorphism, Hilbert spaces and the sequence spaces c0 and ℓp for 1p<∞. We add a new member to this family by showing that there are exactly four closed ideals in for the Banach space E(ℓ2n)c0, that is, E is the c0-direct sum of the finite-dimensional Hilbert spaces ℓ21,ℓ22,…,ℓ2n,…

    Mean curvature self-shrinkers of high genus: Non-compact examples

    Full text link
    We give the first rigorous construction of complete, embedded self-shrinking hypersurfaces under mean curvature flow, since Angenent's torus in 1989. The surfaces exist for any sufficiently large prescribed genus gg, and are non-compact with one end. Each has 4g+44g+4 symmetries and comes from desingularizing the intersection of the plane and sphere through a great circle, a configuration with very high symmetry. Each is at infinity asymptotic to the cone in R3\mathbb{R}^3 over a 2π/(g+1)2\pi/(g+1)-periodic graph on an equator of the unit sphere S2⊆R3\mathbb{S}^2\subseteq\mathbb{R}^3, with the shape of a periodically "wobbling sheet". This is a dramatic instability phenomenon, with changes of asymptotics that break much more symmetry than seen in minimal surface constructions. The core of the proof is a detailed understanding of the linearized problem in a setting with severely unbounded geometry, leading to special PDEs of Ornstein-Uhlenbeck type with fast growth on coefficients of the gradient terms. This involves identifying new, adequate weighted H\"older spaces of asymptotically conical functions in which the operators invert, via a Liouville-type result with precise asymptotics.Comment: 41 pages, 1 figure; minor typos fixed; to appear in J. Reine Angew. Mat
    • …
    corecore