The aim of this paper is to present the construction of exceptional Laguerre
polynomials in a systematic way, and to provide new asymptotic results on the
location of the zeros. To describe the exceptional Laguerre polynomials we
associate them with two partitions. We find that the use of partitions is an
elegant way to express these polynomials and we restate some of their known
properties in terms of partitions. We discuss the asymptotic behavior of the
regular zeros and the exceptional zeros of exceptional Laguerre polynomials as
the degree tends to infinity.Comment: To appear in Studies in Applied Mathematic