20 research outputs found

    Technologieentwicklung und -unterstĂŒtzung fĂŒr Ionenfallenbasierte Quantencomputer (TeufIQ)

    Get PDF
    Purpose of the TeufIQ project is to support the industrial partners of QC-I in developing and manufacturing prototypes of ion-trap based quantum computers. The project framework encompasses a wide range of research services for the QC-I partners placed at the Innovation Center Hamburg (IZHH). The project’s foundation is the expertise and the experience in micro- and nanotechnology of the DLR division QT-IMN in Ulm. We particularly address close collaboration working on open research questions and the development of related technological solutions to facilitate the production of ion-trap based quantum computers in future

    Combined in situ mechanical testing and scale-bridging 3D analysis of nanoporous gold

    Get PDF
    In this work we present results on in situ small scale testing of nanoporous gold (npg) in scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By combining nano- and micromechanical testing of pillar structures with advanced tomographic imaging, a 3D characterization of the plastic deformation process in different states of deformation is achieved. For small strut sizes 360° electron tomography (ET) is applied enabling high quality reconstructions of the 3D morphology of npg without missing-wedge artefacts. Combining the geometric information with mechanical data from in situ testing in SEM and TEM the yield strength is precisely determined. Furthermore, the experimentally derived 3D data are used as input for large-scale molecular dynamics (MD) simulations in order to understand the role of strain localization and identify predominant defect processes. Please click Additional Files below to see the full abstract

    Thin-Film-Based SAW Magnetic Field Sensors

    Get PDF
    In this work, the first surface acoustic-wave-based magnetic field sensor using thin-film AlScN as piezoelectric material deposited on a silicon substrate is presented. The fabrication is based on standard semiconductor technology. The acoustically active area consists of an AlScN layer that can be excited with interdigital transducers, a smoothing SiO2 layer, and a magnetostrictive FeCoSiB film. The detection limit of this sensor is 2.4 nT/Hz at 10 Hz and 72 pT/Hz at 10 kHz at an input power of 20 dBm. The dynamic range was found to span from about ±1.7 mT to the corresponding limit of detection, leading to an interval of about 8 orders of magnitude. Fabrication, achieved sensitivity, and noise floor of the sensors are presented

    Ultrasensitive Magnetoelectric Sensing System for pico-Tesla MagnetoMyoGraphy

    Get PDF
    MagnetoMyoGraphy (MMG) with superconducting quantum interference devices (SQUIDs) enabled the measurement of very weak magnetic fields (femto to pico Tesla) generated from the human skeletal muscles during contraction. However, SQUIDs are bulky, costly and require working in a temperature-controlled environment, limiting wide-spread clinical use. We introduce a low-profile magnetoelectric (ME) sensor with analog frontend circuitry that has sensitivity to measure pico-Tesla MMG signals at room temperature. It comprises magnetostrictive and piezoelectric materials, FeCoSiB/AlN. Accurate device modelling and simulation are presented to predict device fabrication process comprehensively using the finite element method (FEM) in COMSOL MultiphysicsÂź. The fabricated ME chip with its readout circuit was characterized under a dynamic geomagnetic field cancellation technique. The ME sensor experiment validate a very linear response with high sensitivities of up to 378 V/T driven at a resonance frequency of fres = 7.76 kHz. Measurements show the sensor limit of detections of down to 175 pT/Hz at resonance, which is in the range of MMG signals. Such a small-scale sensor has the potential to monitor chronic movement disorders and improve the end-user acceptance of human-machine interfaces

    MEMS magnetic field source for frequency conversion approaches for ME sensors

    Get PDF
    Some magnetoelectric sensors require predefined external magnetic fields to satisfy optimal operation depending on their resonance frequency. While coils commonly generate this external magnetic field, a microelectromechanical systems (MEMS) resonator integrated with permanent magnets could be a possible replacement. In this proof-of-concept study, the interaction of a MEMS resonator and the ME sensor is investigated and compared with the standard approach to achieve the best possible sensor operation in terms of sensitivity. The achievable sensor sensitivity was evaluated experimentally by generating the magnetic excitation signal by a coil or a small-sized MEMS resonator. Moreover, the possibility of using both approaches simultaneously was also analysed. The MEMS resonator operated with 20 Vpp at 1.377 kHz has achieved a sensor sensitivity of 221.21 mV/T. This sensitivity is comparable with the standard approach, where only a coil for sensor excitation is used. The enhanced sensitivity of 277.0 mV/T could be identified by generating the excitation signal simultaneously by a coil and the MEMS resonator in parallel. In conclusion, these MEMS resonator methods can potentially increase the sensitivity of the ME sensor even further. The unequal excitation frequency of the MEMS resonator and the resonance frequency of the ME sensor currently limit the performance. Furthermore, the MEMS resonator as a coil replacement also enables the complete sensor system to be scaled down. Therefore, optimizations to match both frequencies even better are under investigation

    Untersuchung der Festphasenentnetzung metallischer DĂŒnnschichten mittels fortgeschrittener in situ Elektronenmikroskopie

    No full text
    The phenomenon of solid-state dewetting describes the transition of a thin film into an energetically favorable set of particles at temperatures below the melting temperature of the bulk material. Its importance for applications results on the one hand from the degradation mechanism it imposes on applications of thin films in functional electronic, magnetic and optical devices, which limits the maximum temperature during operation or fabrication. On the other hand it has become a popular route to fabricate nanoparticle arrays of controlled shape, size, composition and periodicity. In this work, advanced in situ transmission electron microscopy (TEM) techniques are employed to study the solid-state dewetting behavior of metallic thin films, using discontinuous Au thin films as a model system. The unrivalled capabilities of a state-of-the-art microelectromechanical system (MEMS)-based heating device are exploited to acquire rich datasets of microscopic as well as statistical information on the dewetting process at highest temporal resolution. Complementary TEM techniques are combined to study not only the mechanisms involved during solid-state dewetting, but also the complex interplay with other processes occurring in thin films, like grain growth and texture evolution. The dedicated techniques applied in this work range from electron diffraction, to obtain information on orientation and size of the grains, up to high resolution (HR)TEM, capable of imaging processes on the atomic scale. Significant observations are made on the dewetting behavior, advancing the understanding of solid-state dewetting, e.g. the importance of simultaneous material retraction, transport and accumulation. The transport is found to be bound to existing Au structures, which leads to an intriguing interplay of competing mechanisms. On the one hand degradation is a consequence of the dewetting process, on the other hand percolation is necessary to enable material transport. An event-like character is observed correlated to energy barriers during the process. The kinetics of solid-state dewetting are determined employing a model-free master curve approach. The dominant morphological mechanism is found to be based on the linear retraction of finger-like structures interconnecting the Au islands. A fast initial grain coarsening step is observed to precede the process of solid-state dewetting, while dewetting itself is highly correlated to the evolution of a [111] texture. Grain rotation is found to be an additional mechanism active during solid-state dewetting, which has so far been overlooked. The activity of long range material transport is evidenced in experiments employing a patterned carbonaceous capping layer, while the oxide layer produced from treatment in an oxygen-containing plasma is envisioned to be a useful mean to enhance thin film stability in applications. The methods of in situ TEM are further enhanced in this work. A set of evaluation algorithms is developed as tools to handle the large datasets associated with its experiments to enable the derivation and interpretation of quantitative results. To answer the question of sample temperature in TEM, crucial especially for in situ experiments, a method to precisely and reliably measure the local sample temperature is developed on the basis of parallel beam electron diffraction. The outstanding accuracy and temporal resolution achieved with this method are demonstrated on the employed MEMS-based heating system in dynamic in situ TEM experiments. Besides showing the applicability of the method, these results furthermore underline the distinguished characteristics of the MEMS-based heating system. A route to significantly improve the alignment of the used microscope is established, which has been necessary to achieve the aspired performance of the method. As a whole, this work demonstrates the capabilities and high potential of today's in situ TEM to study dynamic processes in material science.Das PhĂ€nomen der Festphasenentnetzung beschreibt den Zerfall einer DĂŒnnschicht in energetisch bevorzugte Partikel bei Temperaturen unterhalb des Schmelzpunktes des Volumenmaterials. Es spielt eine wichtige Rolle in vielen Anwendungen, da es zum einen als Degradationsmechanismus die maximale Einsatztemperatur von DĂŒnnschichten in elektrischen, magnetischen und optischen Bauteilen, sowie die Prozesstemperaturen wĂ€hrend deren Herstellung limitiert. Zum anderen hat es sich zu einer bevorzugten Methode zur Herstellung von Nanopartikel-Feldern entwickelt, mit Möglichkeiten die Form, GrĂ¶ĂŸe, Zusammensetzung und Anordnung zu kontrollieren. In dieser Arbeit werden fortgeschrittene Methoden der in situ Transmissionselektronenmikroskopie angewendet um das Festphasenentnetzungsverhalten von metallischen DĂŒnnschichten zu untersuchen. Diskontinuierliche Au DĂŒnnschichten dienen hierbei als Modellsystem. Die Verwendung eines in situ Heizhalters basierend auf einem mikroelektromechanischen System (MEMS) bietet besondere Möglichkeiten. So erlaubt dieses System die Aufnahme umfassender DatensĂ€tze bei höchster Zeitauflösung, die sowohl reich an mikroskopischen als auch statistischen Informationen sind. Verschiedene komplementĂ€re Techniken werden kombiniert, um nicht nur die zugrunde liegenden Mechanismen sondern auch die Wechselwirkung von Festphasenentnetzung mit anderen DĂŒnnschichtprozessen zu untersuchen, z.B. Kornwachstum und Texturentwicklung. Die verwendeten Techniken reichen hierbei von der Elektronenbeugung bis zur hochauflösenden Transmissionselektronenmikroskopie. So lassen sich beispielsweise Informationen ĂŒber die Orientierung und GrĂ¶ĂŸe der Körner aus der Elektronenbeugung mit der Abbildung der Prozesse auf der atomaren Skala kombinieren. Weitreichende Erkenntnisse bezĂŒglich des allgemeinen Festphasenentnetzungsverhaltens werden gewonnen, deren VerstĂ€ndnis sich so vorantreiben lĂ€sst. So wurde z.B. die Notwendigkeit von simultan auftretendem Abbau, Transport und der Akkumulation von Material beobachtet. Die Limitierung des Materialtransports entlang bestehender Au Strukturen fĂŒhrt zu einem faszinierenden Wechselspiel zweier gegensĂ€tzlicher Prozesse. So ist zum einen die Degradation ein Resultat der Entnetzung, zum anderen ist die InterkonnektivitĂ€t notwending, um den Materialtransport zu ermöglichen. Ein zeitliches Fortschreiten der Prozesse der Festphasenentnetzung in diskreten Schritten wird beobachtet und auf Energiebarrieren zurĂŒckgefĂŒhrt. Die Kinetik der Festphasenentnetzung wird in einem modellfreien Masterkurven Ansatz erfasst. Die morphologischen Änderungen lassen sich durch einen dominierenden Mechanismus basierend auf dem linearen RĂŒckzug von fingerartigen Strukturen erklĂ€ren, die die verschiedenen Au Inseln miteinander verbinden. Ein schneller anfĂ€nglicher Vergröberungsprozess der Kornstruktur geht der Festphasenentnetzung voraus. Die Entwicklung einer [111] Textur korreliert mit der Entnetzung. Kornrotation wird als zusĂ€tzlicher Mechanismus wĂ€hrend der Festphasenentnetzung beobachtet, ein Mechanismus der bisher nicht beachtet wurde. Die AktivitĂ€t von langreichweitigem Materialtransport zeigt sich in Experimenten unter Verwendung einer strukturierten Schutzschicht aus Kohlenstoff. Im Hinblick auf Anwendungen wird ein vielversprechender Ansatz aufgezeigt, um die StabilitĂ€t gegen Entnetzung unter Verwendung einer schĂŒtzenden Oxidschicht zu verbessern. Diese lĂ€sst sich ĂŒber eine Behandlung in sauerstoffhaltigem Plasma herstellen. Diese Arbeit leistet einen wichtigen Beitrag zur Weiterentwicklung der Methoden der in situ Transmissionselektronenmikroskopie. Verschiedene Auswertealgorithmen werden als Werkzeuge entwickelt, um die mit in situ Experimenten verbundenen großen DatensĂ€tze handhaben und fĂŒr deren Interpretation quantitativ auswerten zu können. Basierend auf der parallelen Strahlbeugung wird eine Methode zur prĂ€zisen und verlĂ€sslichen Messung der lokalen Probentemperatur entwickelt. Die Frage der Probentemperatur im Transmissionselektronenmikroskop ist gerade fĂŒr die Interpretation von in situ Experimenten von grĂ¶ĂŸter Wichtigkeit. Die Genauigkeit und Zeitauflösung dieser Methode wird anhand dynamischer in situ Experimente unter Verwendung des MEMS-basierten Heizsystems aufgezeigt. Um die angestrebte hohe Genauigkeit der Temperaturmessung zu ermöglichen, wird eine Methode zur Optimierung der Justage des Mikroskops zur Verbesserung der StrahlparallelitĂ€t etabliert. Neben der Anwendbarkeit der Methode zeigen die Ergebnisse die ausgezeichneten Eigenschaften des MEMS-basierten in situ Heizsystems. Insgesamt werden in dieser Arbeit die vielfĂ€ltigen Möglichkeiten und das hohe Leistungsvermögen der in situ Transmissionselektronenmikroskopie aufgezeigt. Diese bieten sich insbesondere zur Untersuchung und AufklĂ€rung dynamischer Prozesse in der Materialwissenschaft an

    In-Ear Headphone System with Piezoelectric MEMs Driver

    No full text
    This article presents a prototype in-ear headphone system based on a previously disclosed piezoelectric MEMS driver technology (piezoMEMS). The centerpiece of the earphone is a 4 mm x 4 mm piezoMEMS chip loudspeaker that on its own achieves broadband sound pressure levels of up to 110 dB in an IEC 60318-4 ear simulator. A specifically designed enclosure allows for easy installation of the piezoMEMS driver and takes first steps in optimizing the acoustic performance. Furthermore, the system comprises a specially tailored amplifier as well as a dedicated signal processing concept. The article describes the ideas behind the system, discusses the particular challenges in designing the piezoMEMS earphone, shows measurement results, and, finally, discusses the vast opportunities for future research

    Design and Electroacoustic Analysis of a Piezoelectric MEMS In-Ear Headphone

    No full text
    This article takes an in-depth look at an in-ear headphone demonstrator with a piezoelectric MEMS driver. The MEMS transducer and the demonstrator system including earphone enclosure, signal processing, and application-specific amplifier are described. The main focus of this study lies on an exhaustive electroacoustic analysis of a MEMS earphone, comprising an electrical impedance measurement, various acoustical measurements, and an investigation of the thermal behavior of piezoelectric MEMS drivers. The results show the high potential of this technology for in-ear applications and promise even greater acoustic performance with future improvements

    Zwei-Wege-Lautsprecher basierend auf MEMS-Technologie

    No full text
    Dieser Beitrag stellt einen neuartigen Zwei-Wege-Miniaturlautsprecher vor, der fĂŒr die breitbandige Klangwiedergabe insbesondere in OhrnĂ€he geeignet ist. Der Lautsprecher nutzt einen 10 mm x 10 mm großen Woofer und einen 6 mm x 6 mm großen Tweeter, die beide in MEMS-Technologie gefertigt und gemeinsam auf einer Leiterplatte montiert werden. Die zwei MEMS-Schallwandler bestehen jeweils aus vier unabhĂ€ngigen dreieckigen Biegeaktoren, die gleichzeitig die aktive StrahlerflĂ€che – sprich Membran – bilden. Die vier Aktoren sind durch kleinstmögliche Spalte voneinander strukturell entkoppelt. Mit der gewĂ€hlten Spaltbreite bilden sie eine akustisch geschlossene MembranflĂ€che, sodass im relevanten Frequenzbereich keine Ausgleichsströmungen zwischen Vorder- und RĂŒckseite durch die Spalte stattfinden. Ein auf der Leiterplatte angebrachtes flaches GehĂ€use mit kleinem Volumen verhindert den klassischen akustischen Kurzschluss. DarĂŒber hinaus wird der Zwei-Wege-Miniaturlautsprecher mit einer digitalen Signalverarbeitung fĂŒr die aktive Frequenzweiche und zur Entzerrung des Frequenzgangs kombiniert. Das Gesamtsystem wurde unter Freifeldbedingungen in einem reflexionsarmen Raum einer umfassenden akustischen Charakterisierung unterzogen. Die erzielten akustischen Eigenschaften zeigen, dass die MEMS-Technologie eine attraktive Basis fĂŒr den Lautsprecher der Zukunft darstellt. Systeme wie der hier vorgestellte MEMS-Lautsprecher können unter anderem in MobilgerĂ€ten wie Smartphones und Tablets Anwendung finden

    Pilot Study: Magnetic Motion Analysis for Swallowing Detection Using MEMS Cantilever Actuators

    No full text
    The swallowing process involves complex muscle coordination mechanisms. When alterations in such mechanisms are produced by neurological conditions or diseases, a swallowing disorder known as dysphagia occurs. The instrumental evaluation of dysphagia is currently performed by invasive and experience-dependent techniques. Otherwise, non-invasive magnetic methods have proven to be suitable for various biomedical applications and might also be applicable for an objective swallowing assessment. In this pilot study, we performed a novel approach for deglutition evaluation based on active magnetic motion sensing with permanent magnet cantilever actuators. During the intake of liquids with different consistency, we recorded magnetic signals of relative movements between a stationary sensor and a body-worn actuator on the cricoid cartilage. Our results indicate the detection capability of swallowing-related movements in terms of a characteristic pattern. Consequently, the proposed technique offers the potential for dysphagia screening and biofeedback-based therapies
    corecore