13 research outputs found

    Holographic dual of hot Polchinski-Strassler quark-gluon plasma

    Get PDF
    Abstract: We construct the supergravity dual of the hot quark-gluon plasma in the mass-deformed N = 4 Super-Yang-Mills theory (also known as N = 1∗). The full ten-dimensional type IIB holographic dual is described by 20 functions of two variables, which we determine numerically, and it contains a black hole with S5 horizon topology. As we lower the temperature to around half of the mass of the chiral multiplets, we find evidence for (most likely a first-order) phase transition, which could lead either to one of the Polchinski-Strassler confining, screening, or oblique vacua with polarized branes, or to an intermediate phase corresponding to blackened polarized branes with an S2 ×S3 horizon topology. This phase transition is a feature that could in principle be seen by putting the theory on the lattice, and thus our result for the ratio of the chiral multiplet mass to the phase transition temperature, mc/T = 2.15467491205(6), constitutes the first prediction of string theory and AdS/CFT that could be independently checked via four-dimensional super-QCD lattice computation. We also construct the black-hole solution in certain five-dimensional gauged supergravity truncations and, without directly using uplift/reduction formulae, we find strong evidence that the five- and ten-dimensional solutions are the same. This indicates that five-dimensional gauged supergravity is powerful enough to capture the physics of the high-temperature deconfined phase of the Polchinski-Strassler quark-gluon plasma

    Moduli space of supersymmetric solitons and black holes in five dimensions

    Get PDF
    We determine all asymptotically flat, supersymmetric and biaxisymmetric soliton and black hole solutions to five dimensional minimal supergravity. In particular, we show that the solution must be a multi-centred solution with a Gibbons-Hawking base. The proof involves combining local constraints from supersymmetry with global constraints for stationary and biaxisymmetric spacetimes. This reveals that the horizon topology must be one of S^3, S^1 x S^2 or a lens space L(p,1), thereby providing a refinement of the allowed horizon topologies. We construct the general smooth solution for each possible rod structure. We find a large moduli space of black hole spacetimes with noncontractible 2-cycles for each of the allowed horizon topologies. In the absence of a black hole we obtain a classification of the known `bubbling' soliton spacetimes.Comment: v2: 43 pages, 5 figures, references added, typos fixed, minor clarifications, expanded discussion of physical parameters. v3: clarified statement of theorem 4 (results unchanged, update made after publication

    Construction of Satellite Solar Power Stations from Nonterrestrial Materials

    No full text

    Functional mapping of GABA A receptor subtypes in the amygdala

    No full text
    The physiological significance of the large diversity of GABA A receptors is poorly understood. Using mice, which carry a point mutation that renders specific subtypes of GABA A receptors diazepam insensitive, it was recently discovered that particular types of GABA A receptors are involved in specific, behaviorally relevant signaling pathways. We have used these mice to study inhibitory synaptic transmission in the amygdala. GABA A receptor-mediated inhibitory postsynaptic currents (IPSCs) per se were not affected by the point mutations. Their modulation by diazepam, however, was altered depending on the genotype of the mice studied. Based on the different responses to diazepam, we found that IPSCs in the lateral/basolateral amygdala were mediated by both alpha2- and alpha1-subunit-containing GABA A receptors whereas those in the central amygdala were mediated only by alpha2-subunit-containing GABA A receptors. Immunohistochemical staining corroborated these findings at a morphological level. To investigate a possible link between interneuron and receptor diversity, we selectively depressed release from the subset of GABAergic terminals carrying type 1 cannabinoid receptors. These receptors are known to modulate amygdala-mediated behavior. Application of a type 1 cannabinoid receptor agonist resulted in a selective reduction of inhibitory current mediated by alpha1-subunit-containing GABA A receptors. Mice with specific diazepam-insensitive GABA A receptor subtypes therefore provide a novel tool to investigate GABA A receptor distribution and the organization of inhibitory circuits at a functional level. The crucial role of the amygdala for the mediation of anxiety is in agreement with the part that alpha2-subunit-containing GABA A receptors play in anxiolysis and their important function in this area of the brain
    corecore