193 research outputs found

    A Novel High-Throughput Vaccinia Virus Neutralization Assay and Preexisting Immunity in Populations from Different Geographic Regions in China

    Get PDF
    Background: Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings: A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, crosssectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significan

    Natural Regulatory T Cells in Malaria: Host or Parasite Allies?

    Get PDF
    Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed

    PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice

    Get PDF
    Background: We have previously demonstrated that peroxisome proliferator-activated receptor (PPARγ) activation inhibits hepatocarcinogenesis. We aim to investigate the effect of PPARγ on hepatocellular carcinoma (HCC) metastatic potential and explore its underlying mechanisms. Methods: Human HCC cells (MHCC97L, BEL-7404) were infected with adenovirus-expressing PPARγ (Ad-PPARγ) or Ad-lacZ and treated with or without PPARγ agonist (rosiglitazone). The effects of PPARγ on cell migration and invasive activity were determined by wound healing assay and Matrigel invasive model in vitro, and in an orthotopic liver tumour metastatic model in mice.Results:Pronounced expression of PPARγ was demonstrated in HCC cells (MHCC97L, BEL-7404) treated with Ad-PPARγ, rosiglitazone or Ad-PPARγ plus rosiglitazone, compared with control (Ad-LacZ). Such induction markedly suppressed HCC cell migration. Moreover, the invasiveness of MHCC97L and BEL-7404 cells infected with Ad-PPARγ, or treated with rosiglitazone was significantly diminished up to 60%. Combination of Ad-PPARγ and rosiglitazone showed an additive effect. Activation of PPARγ by rosiglitazone significantly reduced the incidence and severity of lung metastasis in an orthotopic HCC mouse model. Key mechanisms underlying the effect of PPARγ in HCC include upregulation of cell adhesion genes, E-cadherin and SYK (spleen tyrosine kinase), extracellular matrix regulator tissue inhibitors of metalloproteinase (TIMP) 3, tumour suppressor gene retinoblastoma 1, and downregulation of pro-metastatic genes MMP9 (matrix metallopeptidase 9), MMP13, HPSE (heparanase), and Hepatocyte growth factor (HGF). Direct transcriptional regulation of TIMP3, MMP9, MMP13, and HPSE by PPARγ was shown by ChIP-PCR. Conclusion: Peroxisome proliferator-activated receptor-gamma exerts an inhibitory effect on the invasive and metastatic potential of HCC in vitro and in vivo, and is thus, a target for the prevention and treatment of HCC metastases. © 2012 Cancer Research UK All rights reserved.published_or_final_versio

    Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-γ (PPAR-γ) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-γ agonists have never been examined in a model involving an allergen commonly associated with human asthma.</p> <p>Methods</p> <p>We compared the effectiveness of the PPAR-γ agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure.</p> <p>Results</p> <p>PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-α, TGF-β, RANTES, eotaxin, MIP3-α, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-γ expression construct blocked CRA induction of Gob-5 and Muc5-ac.</p> <p>Conclusion</p> <p>Given the potent effectiveness shown by PIO, we conclude that PPAR-γ agonists deserve investigation as potential therapies for human asthma.</p

    Reduced T Regulatory Cell Response during Acute Plasmodium falciparum Infection in Malian Children Co-Infected with Schistosoma haematobium

    Get PDF
    Regulatory T cells (Tregs) suppress host immune responses and participate in immune homeostasis. In co-infection, secondary parasite infections may disrupt the immunologic responses induced by a pre-existing parasitic infection. We previously demonstrated that schistosomiasis-positive (SP) Malian children, aged 4-8 years, are protected against the acquisition of malaria compared to matched schistosomiasis-negative (SN) children.To determine if Tregs contribute to this protection, we performed immunologic and Treg depletion in vitro studies using PBMC acquired from children with and without S. haematobium infection followed longitudinally for the acquisition of malaria. Levels of Tregs were lower in children with dual infections compared to children with malaria alone (0.49 versus 1.37%, respectively, P = 0.004) but were similar months later, during a period with negligible malaria transmission. The increased levels of Tregs in SN subjects were associated with suppressed serum Th1 cytokine levels, as well as elevated parasitemia compared to co-infected counterparts.These results suggest that lower levels of Tregs in helminth-infected children correlate with altered circulating cytokine and parasitologic results which may play a partial role in mediating protection against falciparum malaria

    Impaired Thymic Export and Apoptosis Contribute to Regulatory T-Cell Defects in Patients with Chronic Heart Failure

    Get PDF
    Animal studies suggest that regulatory T (T(reg)) cells play a beneficial role in ventricular remodeling and our previous data have demonstrated defects of T(reg) cells in patients with chronic heart failure (CHF). However, the mechanisms behind T(reg-)cell defects remained unknown. We here sought to elucidate the mechanism of T(reg-)cell defects in CHF patients.We performed flow cytometry analysis and demonstrated reduced numbers of peripheral blood CD4(+)CD25(+)FOXP3(+)CD45RO(-)CD45RA(+) naïve T(reg) (nT(reg)) cells and CD4(+)CD25(+)FOXP3(+)CD45RO(+)CD45RA(-) memory T(reg) (mT(reg)) cells in CHF patients as compared with non-CHF controls. Moreover, the nT(reg)/mT(reg) ratio (p<0.01), CD4(+)CD25(+)FOXP3(+)CD45RO(-) CD45RA(+)CD31(+) recent thymic emigrant T(reg) cell (RTE-T(reg)) frequency (p<0.01), and T-cell receptor excision circle levels in T(reg) cells (p<0.01) were lower in CHF patients than in non-CHF controls. Combined annexin-V and 7-AAD staining showed that peripheral T(reg) cells from CHF patients exhibited increased spontaneous apoptosis and were more prone to interleukin (IL)-2 deprivation- and CD95 ligand-mediated apoptosis than those from non-CHF individuals. Furthermore, analyses by both flow cytometry and real-time polymerase chain reaction showed that T(reg)-cell frequency in the mediastinal lymph nodes or Foxp3 expression in hearts of CHF patients was no higher than that of the non-CHF controls.Our data suggested that the T(reg)-cell defects of CHF patients were likely caused by decreased thymic output of nascent T(reg) cells and increased susceptibility to apoptosis in the periphery

    Aberrant DNA Methylation Is Associated with Disease Progression, Resistance to Imatinib and Shortened Survival in Chronic Myelogenous Leukemia

    Get PDF
    The epigenetic impact of DNA methylation in chronic myelogenous leukemia (CML) is not completely understood. To elucidate its role we analyzed 120 patients with CML for methylation of promoter-associated CpG islands of 10 genes. Five genes were identified by DNA methylation screening in the K562 cell line and 3 genes in patients with myeloproliferative neoplasms. The CDKN2B gene was selected for its frequent methylation in myeloid malignancies and ABL1 as the target of BCR-ABL translocation. Thirty patients were imatinib-naïve (mostly treated by interferon-alpha before the imatinib era), 30 were imatinib-responsive, 50 were imatinib-resistant, and 10 were imatinib-intolerant. We quantified DNA methylation by bisulfite pyrosequencing. The average number of methylated genes was 4.5 per patient in the chronic phase, increasing significantly to 6.2 in the accelerated and 6.4 in the blastic phase. Higher numbers of methylated genes were also observed in patients resistant or intolerant to imatinib. These patients also showed almost exclusive methylation of a putative transporter OSCP1. Abnormal methylation of a Src suppressor gene PDLIM4 was associated with shortened survival independently of CML stage and imatinib responsiveness. We conclude that aberrant DNA methylation is associated with CML progression and that DNA methylation could be a marker associated with imatinib resistance. Finally, DNA methylation of PDLIM4 may help identify a subset of CML patients that would benefit from treatment with Src/Abl inhibitors

    Mechanisms and models of somatic cell reprogramming

    Get PDF
    Whitehead Institute for Biomedical Research (Jerome and Florence Brill Graduate Student Fellowship)National Institutes of Health (U.S.) (US NIH grant RO1-CA087869)National Institutes of Health (U.S.) (US NIH grant R37-CA084198)National Science Foundation (U.S.) (NSF Graduate Research Fellowship)National Institutes of Health (U.S.) ((NIH) Kirschstein National Research Service Award,1 F32 GM099153-01A1)Vertex Pharmaceuticals Incorporated (Vertex Scholar
    • …
    corecore