1,447 research outputs found

    Bell-inequality violation with a triggered photon-pair source

    Full text link
    Here we demonstrate, for the first time, violation of Bell's inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to reject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.Comment: 14 pages, 4 figure

    Evolution of entanglement within classical light states

    Full text link
    We investigate the evolution of quantum correlations over the lifetime of a multi-photon state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, non-degenerate, exciton-photon state and are consistent with simulations. We conclude that emission of photon pairs by a typical quantum dot with finite polarisation splitting is in fact entangled in a time-evolving state, and not classically correlated as previously regarded

    Early Permian Zircon Ages from the \u3cem\u3eP. confluens\u3c/em\u3e and \u3cem\u3eP. pseudoreticulata\u3c/em\u3e Spore-Pollen Zones in the Southern Bonaparte and Canning Basins, Northwestern Australia

    Get PDF
    The Pseudoreticulatispora confluens–P. pseudoreticulata spore-pollen zonal datum typically coincides with the end of widespread Permian glacial deposits in Western Australia. Although previously attributed to the mid-Sakmarian, chemical abrasion isotope dilution thermal ionisation mass spectrometry (TIMS) dating of zircons from volcanic tuffs in the Ditji Formation of the Bonaparte Basin and the Grant Group in the Canning Basin point to an Asselian age of about 295.25 Ma for this datum. All dated zircons from the Ditji Formation came from petroleum well cuttings but the accompanying palynology was mostly from sidewall cores; however, all Grant Group samples were from conventional core. TIMS dates from the Ditji Formation range in age from 295.2 to 292.7 Ma whereas the only productive tuff from the Grant Group yielded a 296.26 Ma date. By comparison, there are no zircon dates to constrain the onset of glacial deposition in Australia. The Bonaparte Basin ages overlap with those for the Edie Tuff (296.1–294.5 Ma) in Queensland’s Galilee Basin, approximately 2000 km to the southeast, which also lies close to the base of the P. pseudoreticulata Zone. To date the only fossil group within the P. confluens Zone in Western Australia to provide independent age control, albeit loosely, are goniatites from the northern Perth Basin (Uraloceras irwinense and Juresanites jacksoni) that have consistently been attributed to the Sakmarian; these require a reassessment of their affinity with Russian faunas and therefore to global stratotypes. The position of the Carboniferous–Permian boundary is elusive in Australia and will remain so until additional volcanic tuffs containing young datable zircons are found; however, spore-pollen and zircon dates from Namibia place this boundary within the P. confluens Zone

    Indistinguishable photons from a diode

    Full text link
    We generate indistinguishable photons from a semiconductor diode containing a InAs/GaAs quantum dot. Using an all-electrical technique to populate and control a single-photon emitting state we filter-out dephasing by Stark-shifting the emission energy on timescales below the dephasing time of the state. Mixing consecutive photons on a beam-splitter we observe two-photon interference with a visibility of 64%
    • 

    corecore