60 research outputs found

    Coarsening dynamics in one dimension: The phase diffusion equation and its numerical implementation

    Full text link
    Many nonlinear partial differential equations (PDEs) display a coarsening dynamics, i.e., an emerging pattern whose typical length scale LL increases with time. The so-called coarsening exponent nn characterizes the time dependence of the scale of the pattern, L(t)≈tnL(t)\approx t^n, and coarsening dynamics can be described by a diffusion equation for the phase of the pattern. By means of a multiscale analysis we are able to find the analytical expression of such diffusion equations. Here, we propose a recipe to implement numerically the determination of D(λ)D(\lambda), the phase diffusion coefficient, as a function of the wavelength λ\lambda of the base steady state u0(x)u_0(x). DD carries all information about coarsening dynamics and, through the relation ∣D(L)∣≃L2/t|D(L)| \simeq L^2 /t, it allows us to determine the coarsening exponent. The main conceptual message is that the coarsening exponent is determined without solving a time-dependent equation, but only by inspecting the periodic steady-state solutions. This provides a much faster strategy than a forward time-dependent calculation. We discuss our method for several different PDEs, both conserved and not conserved

    Dynamic effects induced by renormalization in anisotropic pattern forming systems

    Full text link
    The dynamics of patterns in large two-dimensional domains remains a challenge in non-equilibrium phenomena. Often it is addressed through mild extensions of one-dimensional equations. We show that full 2D generalizations of the latter can lead to unexpected dynamical behavior. As an example we consider the anisotropic Kuramoto-Sivashinsky equation, that is a generic model of anisotropic pattern forming systems and has been derived in different instances of thin film dynamics. A rotation of a ripple pattern by 90∘90^{\circ} occurs in the system evolution when nonlinearities are strongly suppressed along one direction. This effect originates in non-linear parameter renormalization at different rates in the two system dimensions, showing a dynamical interplay between scale invariance and wavelength selection. Potential experimental realizations of this phenomenon are identified.Comment: 5 pages, 3 figures; supplemental material available at journal web page and/or on reques

    Quantitative analysis of the debonding structure of soft adhesives

    Full text link
    We experimentally investigate the growth dynamics of cavities nucleating during the first stages of debonding of three different model adhesives. The material properties of these adhesives range from a more liquid-like material to a soft viscoelastic solid and are carefully characterized by small strain oscillatory shear rheology as well as large strain uniaxial extension. The debonding experiments are performed on a probe tack set-up. Using high contrast images of the debonding process and precise image analysis tools we quantify the total projected area of the cavities, the average cavity shape and growth rate and link these observations to the material properties. These measurements are then used to access corrected effective stress and strain curves that can be directly compared to the results from the uniaxial extension

    Kinetic roughening in a realistic model of non-conserved interface growth

    Get PDF
    We provide a quantitative picture of non-conserved interface growth from a diffusive field making special emphasis on two main issues, the range of validity of the effective small-slopes (interfacial) theories and the interplay between the emergence of morphologically instabilities in the aggregate dynamics, and its kinetic roughening properties. Taking for definiteness electrochemical deposition as our experimental field of reference, our theoretical approach makes use of two complementary approaches: interfacial effective equations and a phase-field formulation of the electrodeposition process. Both descriptions allow us to establish a close quantitative connection between theory and experiments. Moreover, we are able to correlate the anomalous scaling properties seen in some experiments with the failure of the small slope approximation, and to assess the effective re-emergence of standard kinetic roughening properties at very long times under appropriate experimental conditions.Comment: Journal of Statistical Mechanics: Theory & Experiment, in pres

    Strong anisotropy in two-dimensional surfaces with generic scale invariance: Nonlinear effects

    Get PDF
    We expand a previous study [Phys. Rev. E 86, 051611 (2012)] on the conditions for occurrence of strong anisotropy in the scaling properties of two-dimensional surfaces displaying generic scale invariance. In that study, a natural scaling ansatz was proposed for strongly anisotropic systems, which arises naturally when analyzing data from, e.g., thin-film production experiments. The ansatz was tested in Gaussian (linear) models of surface dynamics and in nonlinear models, like the Hwa-Kardar (HK) equation [Phys. Rev. Lett. 62, 1813 (1989)], which are susceptible of accurate approximations through the former. In contrast, here we analyze nonlinear equations for which such approximations fail. Working within generically scale-invariant situations, and as representative case studies, we formulate and study a generalization of the HK equation for conserved dynamics and reconsider well-known systems, such as the conserved and the nonconserved anisotropic Kardar-Parisi-Zhang equations. Through the combined use of dynamic renormalization group analysis and direct numerical simulations, we conclude that the occurrence of strong anisotropy in two-dimensional surfaces requires dynamics to be conserved. We find that, moreover, strong anisotropy is not generic in parameter space but requires, rather, specific forms of the terms appearing in the equation of motion, whose justification needs detailed information on the dynamical process that is being modeled in each particular case.Partial support for this work has been provided by MINECO (Spain) Grant No. FIS2012-38866-C05-01. E.V. acknowledges support by Universidad Carlos III de Madrid

    Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation

    Full text link
    We study numerically the Kuramoto-Sivashinsky (KS) equation forced by external white noise in two space dimensions, that is a generic model for e.g. surface kinetic roughening in the presence of morphological instabilities. Large scale simulations using a pseudospectral numerical scheme allow us to retrieve Kardar-Parisi-Zhang (KPZ) scaling as the asymptotic state of the system, as in the 1D case. However, this is only the case for sufficiently large values of the coupling and/or system size, so that previous conclusions on non-KPZ asymptotics are demonstrated as finite size effects. Crossover effects are comparatively stronger for the 2D case than for the 1D system.Comment: 5 pages, 3 figures; supplemental material available at journal web page and/or on reques

    Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    Get PDF
    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in-situ microscopy observations of fracture surfaces at different stages of quasi-static mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self- similar process driven by a spatial period-doubling instability of facet arrays with a growth rate dependent on mode mixity. Those results have important implications for understanding the failure of a wide range of materials

    Unstable nonlocal interface dynamics

    Get PDF
    4 pages, 2 figures.-- PACS nrs.: 68.35.Ct, 05.45.−a, 47.54.−r.Nonlocal effects occur in many nonequilibrium interfaces, due to diverse physical mechanisms like diffusive, ballistic, or anomalous transport, with examples from flame fronts to thin films. While dimensional analysis describes stable nonlocal interfaces, we show the morphologically unstable condition to be nontrivial. This is the case for a family of stochastic equations of experimental relevance, paradigmatically including the Michelson-Sivashinsky system. For a whole parameter range, the asymptotic dynamics is scale invariant with dimension-independent exponents reflecting a hidden Galilean symmetry. The usual Kardar-Parisi-Zhang nonlinearity, albeit irrelevant in that parameter range, plays a key role in this behavior.This work has been partially supported through Grants No. FIS2006-12253-C06-01 and No. FIS2006-12253-C06-06 (MEC, Spain) and No. S-0505/ESP-0158 (CAM, Spain). M. N. acknowledges support by Fundación Carlos III (Spain) and by Fondazione Angelo Della Riccia (Italy).Publicad

    Unified moving-boundary model with fluctuations for unstable diffusive growth

    Get PDF
    17 pages, 9 figures.-- PACS nrs.: 81.10.-h, 68.35.Ct, 64.60.Ht, 81.15.Gh.-- MSC2000 code: 82C24.-- ArXiv pre-print available at: http://arxiv.org/abs/0812.4160MR#: MR2496824 (2010c:82073)Final publisher version available Open Access at: http://gisc.uc3m.es/~cuerno/publ_list.htmlWe study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment processes. A small-slope approximation allows us to derive effective interface evolution equations (IEEs) in which parameters are related to those of the full moving-boundary problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short times that evolves into kinetic roughening of the Kardar-Parisi-Zhang (KPZ) class. In the instantaneous kinetics limit, the IEE combines the Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity, and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic transients can account for the experimental difficulties in observing KPZ scaling. We also compare our results with relevant data from experiments and discrete models.This work has been partially supported by UC3M/CAM (Spain) Grant No. UC3M-FI-05-007, CAM (Spain) Grant No. S-0505/ESP-0158, and by MEC (Spain), through Grants No. FIS2006-12253-C06-01, No. FIS2006-12253-C06-06, and the FPU program (M. N.).Publicad
    • …
    corecore