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Universidad Pontificia Comillas, E-28015 Madrid, Spain

Rodolfo Cuerno

Departamento de Matemáticas and GISC, Universidad Carlos III de Madrid,

Avenida de la Universidad 30, 28911 Leganés, Spain

1

http://arXiv.org/abs/0812.4160v1
Nota adhesiva
Published in: Physical Review E 78, 021601 (2008)



Abstract

We study a moving boundary model of non-conserved interface growth that implements the

interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous

examples are found in thin film production by chemical vapor deposition and electrochemical

deposition. The model also incorporates noise terms that account for fluctuations in the diffusive

and in the attachment processes. A small slope approximation allows us to derive effective interface

evolution equations (IEE) in which parameters are related to those of the full moving boundary

problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for

slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the

well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short

times that evolves into kinetic roughening of the Kardar-Parisi-Zhang class. In the instantaneous

kinetics limit, the IEE combines Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity,

and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic

transients can account for the experimental difficulties to observe KPZ scaling. We also compare

our results with relevant data from experiments and discrete models.

PACS numbers: 68.35.Ct, 81.10.-h, 64.60.Ht, 81.15.Gh, 81.15.Pq
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I. INTRODUCTION

Ever since the beginning of the nineteenth century [1, 2, 3], diffusion-limited growth has

attracted the attention of physicists, due to its experimental ubiquity and, partly, because

it is amenable to continuum descriptions that are sometimes solvable. For instance, elec-

trochemical deposition (ECD) of metals [4, 5] has been and still is [6, 7, 8] a subject of

intense study during this time due to its (in principle) experimental simplicity and its many

technological applications: A deposit grows on the cathode when a potential difference is

set between two metallic electrodes in a salt solution (generally of Cu, Ag or Zn). Another

interesting system of a conceptually similar type is chemical vapor deposition (CVD) [9], in

which a deposit grows from a vapor phase through the incorporation of a reacting species

which attaches via chemical reactions once it reaches the aggregate. CVD is one of the

techniques of choice for the fabrication of many microelectronic devices, and is currently

being the object of intense study [10, 11, 12], partly motivated by its use also in emerging

fields of Science and Technology, such as Microfluidics [13]. The practical relevance of ECD

and CVD [4, 5, 9] perhaps makes them appear as two paradigmatic examples of a larger

class of growth systems (that will be referred to henceforth as diffusive) in which dynamics

is a result of the competition between diffusive transport and attachment kinetics at the

aggregate interface. Given that growth dynamics in these processes is not constrained in

principle by mass conservation, they provide important examples of non-conserved growth

[14].

Despite the great amount of work devoted to these systems, they still pose important

challenges to the detailed understanding of the very different structures grown under diverse

conditions, whose geometries range from fractal to columnar. Partial progress has been

achieved so far through the study of the time evolution of the aggregate surface and its

roughness [14, 15]. In particular, a very successful theoretical framework for such type of

study has been the use of stochastic growth equations for the interface height. Thus, e.g.

the celebrated Kardar-Parisi-Zhang (KPZ) equation [16],

∂h

∂t
= V + ν∇2h +

V

2
(∇h)2 + η(r, t), (1)

has been postulated as a universal model of non-conserved rough interface growth. In (1), ν

is a positive constant, η(r, t) is an uncorrelated Gaussian noise representing fluctuations, e.g.,

in a flux of depositing particles, and V is the average surface growth velocity. Many times
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the KPZ equation has been put forward as the description of specific experimental growth

systems based on symmetry considerations and universality arguments. In view of the fact

[17] that very few experiments have been reported which are compatible with the predictions

of the KPZ equation (two examples in ECD and CVD are provided in [18, 19]), the main

drawback of such a theoretical approach [17] is that, in most cases, this coarse-grained

level of description does not allow to make a connection between the experimental and the

theoretical parameters, so that it is difficult to assess the cause of the disagreement between

theoretical description and experimental observations. Moreover, such an approach does

not allow to include in a systematic way other potentially important physical mechanisms,

such as e.g. non-local effects (typical of diffusive systems) or fluctuations related to mass

transport within the dilute phase.

In previous work [20, 21] we have put forward an argument as to why many experiments

on non-conserved interface growth, such as by ECD and CVD, rarely reproduce the KPZ

roughness exponents. Namely, morphological instabilities usually occur in these and many

other growth systems that induce long crossovers making the asymptotic KPZ behavior

hard to observe. In this paper, we substantiate further such an approach to the problem of

non-conserved growth, by constructing a model that incorporates the main constitutive laws

common to diffusive growth systems, from which an effective stochastic growth equation can

be explicitly derived from first principles.

The aim of this work is threefold: First, our basic (stochastic) moving boundary problem

can be explicitly related to realistic CVD and (simplified) ECD systems. We thus provide

a novel unified picture of these two growth techniques, that makes explicit their common

features. Nevertheless, due to the generality of the basic constitutive laws that we assume,

we expect our model to have implications also for different growth procedures that can

be described as diffusive in the sense described above. Second, we benefit from the model

formulation in terms of constitutive laws in order to derive the dependence of coefficients

of the effective interface equation with physical parameters. This result seems to be new in

the context of diffusive growth, and will allow us to show that the form (and properties)

of the effective height equation depends crucially on the efficiency of attachment kinetics.

Specifically, if the kinetics at the surface is instantaneous, i.e., if the particles aggregate

with probability close to unity when they arrive at the surface, the system can be described

by a new equation which is morphologically unstable, but that still provides non-KPZ scale
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invariance of the interface fluctuations at large scales. This new result reinforces our previous

conclusions [20, 21], on the experimental irrelevance of KPZ scaling in diffusive growth

systems. On the other hand, for slow interface kinetics the effective evolution equation is the

well-known (stochastic) Kuramoto-Sivashinsky equation [22], that displays a qualitatively

similar dynamics, albeit with a long scale behavior that does fall into the KPZ class [23, 24,

25]. Third, we will interpret some results from experiments and discrete models under the

light of our continuum theory both qualitatively and quantitatively. As (the deterministic

limit of) our model has been profusely tested in the case of CVD, we will mostly consider

experiments and models from the ECD context.

The paper is organized as follows. We describe in Sec. II our moving boundary formu-

lation of diffusive growth systems, including noise terms related to fluctuations in diffusive

currents and relaxation events. Section III reports a linear stability analysis of the ensuing

unified model of ECD and CVD. Using a small slope approximation, we derive in Section

IV a universal nonlinear stochastic equation for the aggregate surface that is numerically

studied in the novel case of infinitely fast kinetics. Sec. V is devoted to making a connec-

tion with several experiments and discrete models on diffusive growth systems. Finally, we

conclude in Sec. VI with a discussion of our results, which will allow us to suggest a reason-

ably approximate picture of non-conserved growth. Some technical details are given in the

appendices.

II. MOVING BOUNDARY PROBLEM

As it turns out, our description of diffusive growth systems takes a form whose determin-

istic limit has been long studied in the context of CVD. Thus, we first review the classic

constitutive equations of CVD [26, 27, 28], and subsequently consider the effect of noise due

to the fluctuations related to the different relaxation mechanisms involved. Then, we write

the equations of ECD growth in a form that unifies this technique with CVD.

A. Chemical vapor deposition

A stagnant diffusion layer of infinite vertical extent is assumed to exist above the substrate

upon which an aggregate will grow, see a sketch in Fig. 1. This approach implies that the
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FIG. 1: Schematic representation of a model CVD growth system. Black points represent ag-

gregating units diffusing in the dilute phase. The different transport mechanisms (bulk diffusion,

attachment and surface diffusion) are indicated in the figure by their corresponding equations. For

the definitions of the noise terms (q,p, χ) see Sec. IIC.

length of the stagnant layer (typically of the order of cm) is much larger than the typical

thickness of the deposit (in the range of microns). The particles within the vapor diffuse

randomly until they arrive at the surface, react and aggregate to it. The concentration of

these particles, c(x, z, t) ≡ c(r, t), obeys the diffusion equation

∂tc = D∇2c. (2)

In the experiments, the mean concentration at the top of the stagnant layer is chosen to be

a constant, equal to the initial average concentration ca.

Besides this, mass is conserved at the aggregate surface, so the local normal velocity at
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an arbitrary point on the surface is given by

Vn = ΩD∇c · n− Ω∇s · Js, (3)

where Ω is the molar volume of the aggregate and n is the local unit normal, exterior to

the aggregate. The last equation expresses the fact that growth takes place along the local

normal direction (usually referred to as conformal growth in the CVD literature) and is due

to the arrival of particles from the vapor [the first term in Eq. (3)] and via surface diffusion

(Js stands for the diffusing particle current over the aggregate surface and ∇s is the surface

gradient).

Moreover, the particle concentration, c, and its gradient at the surface are related through

the mixed boundary condition

kD(c − c0
eq + Γκ)

∣

∣

∣

ζ(x,t)
= D∇c · n

∣

∣

∣

ζ(x,t)
, (4)

where c0
eq is the local equilibrium concentration of a flat interface in contact with its vapor,

and ζ(x, t) is the local surface height. This equation is closely related to the probability of

a particle to stick to the surface when it reaches it (see below).

In summary, Eqs. (2) and (3) describe diffusive transport in the vapor phase and the way

that particles attach to the growing aggregate. Let us concentrate on the physical meaning

of Eq. (4). The parameter Γ is related to temperature [29, 30] as Γ = γc0
eqΩ/(kBT ), where

γ is the surface tension (that will be assumed a constant) and κ = (∂xxζ) [1 + (∂xζ)2]
−3/2

is the surface curvature. The boundary condition (4) can be obtained analytically e.g.

from kinetic theory by computing the probability distribution for a random walker close

to a partially absorbing boundary. There, the particles have a sticking probability, s, of

aggregating irreversibly (i.e., attachment is not deterministic). In such a case [31]

kD =
s

2 − s
DL−1

mfp, (5)

where Lmfp is the particle mean free path. Assuming that Lmfp is sufficiently small we find

two limits in Eq. (5): If the sticking probability vanishes (s = 0) then ∇c = 0 at the

boundary, so the aggregate does not grow. On the contrary, if the sticking probability is

close to unity (provided Lmfp is small enough), then kD takes very large values and equation

(4) reduces to the well-known Gibbs-Thomson relation [29, 30], which incorporates into the

equations the fact that concentration is different in regions with different curvature. In
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summary, Eq. (4) gives a simple macroscopic interpretation of a microscopic parameter, the

sticking probability, and allows to quantify the efficiency of the chemical reactions leading

to species attachment at the interface.

B. Electrochemical deposition

In an electrochemical experiment, dynamics is more complex than in the CVD system

as represented above, due to the existence of two different species subject to transport

(anions and cations) [32] and an imposed electric field. For a visual reference, see Fig. 2.

Although more elaborate treatments of these can be performed [33, 34, 35], qualitatively

the morphological results are similar to the more simplified description we will be making

in what follows. The virtues of the latter include an explicit mapping to the CVD system

and explicit experimental verification.

Thus, in ECD, mass transport is not only due to diffusion in the dilute phase, but also

due to electromigration and convection. Let C and A be the concentration of cations and

anions, respectively, then

∂tC = −∇ · Jc, = ∇ · (Dc∇C − µcEC − vC) , (6)

∂tA = −∇ · Ja, = ∇ · (Da∇A + µaEA − vA) , (7)

where Dc,a are, respectively, the cationic and anionic diffusion coefficients, µc,a are their

mobilities, and E is the electric field through the cell, which obeys the Poisson equation,

∇ · E = −∇2φ = eNA(zcC − zaA)/ε, (8)

with NA the Avogadro constant, ezc and −eza being the cationic and anionic charges, re-

spectively, φ the electric potential, and ε the fluid permittivity. The velocity v of the fluid

obeys the Navier-Stokes equation, although we will assume this velocity to vanish in very

thin cells [36].

Another interesting experimental variable is the electric current density, J , given by

J = F (zcµcC + zaµaA)E = σ(t)E, (9)

where σ(t) is the apparent electric conductivity. Many experiments exploit the capability

of tuning several parameters while maintaining J constant (galvanostatic conditions), hence

the relevance of this parameter.
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Anode

Cathode

FIG. 2: (color online) Schematic representation of a model ECD growth system. Cations migrate

towards the cathode (lower side) while anions migrate towards the anode (upper side) in an infinite

cell. The different transport mechanisms (bulk diffusion and drift, cation reduction) are indicated

in the figure by their corresponding equations.

In order to better understand the way in which the particles evolve in the cell, we need

to follow their dynamics when the external electric field is switched on. Thus, the cation

and anion concentrations are initially constant and uniform across the cell and then, once

the electric field is applied, anions move towards the anode and cations move towards the

cathode. Cations reduce at the cathode thus forming an aggregate of neutral particles. On

the contrary, anions do not aggregate, rather, they merely pile up at the anode, which is

dissolving at the same rate as the cations aggregate in the cathode. Hence, the number of

cations remains a constant.

Mathematically, this mechanism of aggregation can be expressed as a boundary condition

for the cation concentration. Before introducing such a boundary condition we will simplify
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the set of diffusion equations (6)-(7) following Refs. [37, 38]. Let us consider that the deposit

moves with a given constant velocity V , in such a way that, in the frame of reference co-

moving with the surface, z = 0 is the position of the mean height and z → ∞ represents

the position of the anode (thus, we are dealing with the case in which the height of the

aggregate is negligible with respect to the electrode separation). Moreover, we will assume

that the system is under galvanostatic conditions, namely, that the current density at the

cathode, J , is maintained constant. Thus, the problem can be separated into two spatial

regions: far enough from and close to the cathode.

At distances larger than the typical diffusion length, lD = D/V , the net charge is zero,

so that zaA = zcC. Hence, multiplying Eq. (6) by zcµa, and adding Eq. (7) multiplied by

zaµc we have

∂tC = D∇2C, ∂tA = D∇2A. (10)

In both equations we have used the ambipolar diffusion coefficient, given by

D =
µcDa + µaDc

µa + µc
. (11)

Hence, mass transport reduces to a single-variable diffusion equation. It is also important

that the electroneutrality condition (zaA = zcC) implies that the mean interface velocity is

equal to the anion migration velocity, that is, V = µaE∞, where E∞ is the electric field very

far from the cathode (see Refs. [37, 38] for further details), and then

J

F
= zcJc − zaJa = −

V Fzc Ca

1 − tc
, (12)

where tc = µc/(µa +µc), and Ca is the initial cation concentration. Finally, we must provide

an equation to describe cation attachment. As a point of departure we will take a relation

between the charge transport through the interface and its local properties, given by the

well-known Butler-Volmer (BV) equation [4, 5, 33, 39]

J = J0

[

e(1−b)ηzcF/RT − e−(bη+ηs)zcF/RT Cζ/Ca

]

, (13)

where J0 is the exchange current density in equilibrium, b is a coefficient which ranges from

0 to 1, and estimates the asymmetry of the energy barrier related to the cation reduction

reaction, and η = ∆φ−∆φeq is the overpotential, from which a surface curvature contribution

ηs has been singled out, of the form

zcFηs

RT
=

Ωγ

RT
κ = ΓΩκ, (14)
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where we have defined the parameter Γ = γ/RT in the ECD context. The first term

on the right hand side of Eq. (13) is proportional to the rate of the backward reaction,

X → Xn+ + ne−, and the second one is proportional to the rate of the forward reaction,

Xn+ + ne− → X. The factor Cζ (the concentration at the surface) is due to the supply of

cations at the surface. Since the flux of anions through the cathode is zero (because they

neither react nor aggregate) the electric current density at the aggregate surface is only due

to the cations, and the charge current is proportional to the cation current. Hence [4, 40],

J = −
zcDcFV

1 − tc
∇C · n

∣

∣

∣

ζ
. (15)

This equation, combined with Eq. (13), provides a mixed boundary condition which relates

the cation concentration at the boundary with its gradient. In order to cast it into a shape

that recalls the CVD relation, we define

KD =
J0

zcFCa

e−bzcFη/RT , (16)

C0
eq = Cae

zcFη/RT , (17)

and obtain from (13), (15)

Dc

1 − tc
∇C · n

∣

∣

∣

ζ
= KD(C − C0

eq)
∣

∣

∣

ζ
. (18)

The coefficient KD is related with the sticking probability for cations: if the aggregation

is very effective (large sticking probability) the overpotential is a large negative quantity

and then KD grows exponentially. In addition, the concentration C0
eq decreases. Hence, we

can approximate Eq. (18) by C ≃ C0
eq. In the limit when every particle which arrives at

the surface sticks irreversibly, the solution cannot supply enough particles, C = 0, and the

current density takes its maximum value. This value of the current is called limiting current

density. On the other hand, if the sticking probability is small, the system is always close

to equilibrium and ∇C ≃ 0, so that the net current is zero.

Finally, we close the system with an equation for mass conservation at the boundary.

Note that the local velocity of the aggregate surface is proportional to the flux of particles

arriving to it, therefore

Vn = −ΩJc · n = −
Ω

zcF
J, (19)

where Ω is the molar volume, here defined as the ratio of the metal molar mass, M , and the

aggregate mean density, ρ. For a flat front, Vn = V , hence comparing this equation with
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Eq. (15) we find

Ω =
M

ρ
=

1 − tc
Ca

, (20)

a relationship which has been previously proposed theoretically [40] and experimentally

verified [36], thus supporting the hypotheses made in this section.

Surely, the reader has noticed that the last equations resemble those for CVD. To em-

phasize this similarity, we define new variables and parameters as

c = RcC, ca = RcCa, c0
eq = RcC

0
eq, kD =

KD

Rc
, (21)

where Rc ≡ Dc/[D(1−tc)]. With these definitions, Eqs. (2)-(4) describe (under the physical

assumptions made above) the evolution of both diffusive growth systems, CVD and ECD.

C. The role of fluctuations

The set of equations presented in the previous section describes the evolution of the mean

value of the concentration so that, formally, we can track the position of the interface at

any instant. However, it explicitly ignores the (thermal) fluctuations related to the different

transport and relaxation mechanisms involved. In order to account for these, we define the

stochastic functions q, p and χ as the fluctuations in the flux of particles in the dilute phase

(−D∇c), in the surface-diffusing particle current (Js), and in the equilibrium concentration

value at the interface, respectively. We choose these noise terms, q, p and χ, to have zero

mean value and correlations given by

〈qi(r, t) qj(r
′, t′)〉 = Q δijδ(r − r′)δ(t − t′), (22)

〈pi(r, t) pj(r
′, t′)〉 = P δij

δ(r − r′)δ(t − t′)
√

1 + (∂xζ)2
, (23)

〈χ(r, t) χ(r′, t′)〉 = I
δ(r − r′)δ(t − t′)
√

1 + (∂xζ)2
, (24)

where i, j denote vector components and Q, P , and I will be determined from the equilibrium

fluctuations following [41, 42]. Finally, the factor
√

1 + (∂xζ)2 in (23), (24) ensures that the

noise strength is independent of the surface orientation.

Thus, the stochastic moving boundary problem we propose to describe diffusive growth
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has the form

∂tc = D∇2c −∇ · q, (25)

D∂nc = kD(c − c0
eq + Γκ + χ)

∣

∣

∣

ζ
+ q · n, (26)

Vn = Ω
[

D∂nc −∇s · Js − q · n−∇s · p
]

, (27)

lim
z→∞

c(x, z; t) = ca. (28)

In (27) the surface diffusion term, ∇s · Js, is proportional to the surface diffusion coefficient

Ds and the surface concentration of particles νs; moreover, this term is related to the local

surface curvature [29, 30]

∇s · Js = B∇2
sκ. (29)

In order to determine the values of the coefficients Q, P and I defined in equations (22)-

(24), we use a local equilibrium hypothesis [42, 43]. To begin with, let us consider an ideal

concentration ca of randomly distributed particles. The probability of finding n particles in

a given volume is given by a Poisson distribution. The mean and variance of this distribution

are ca, hence the concentration c satisfies

〈(c(r, t) − ca)(c(r
′, t′) − ca)〉 = ca δ(r− r′) δ(t − t′). (30)

This equation will allow us to determine Q. First, we write Eq. (25) as

∂t(c − ca) = D∇2(c − ca) −∇ · q. (31)

Let ckω and qkω be the Fourier transforms of [c(r, t) − ca] and q, respectively,

ckω =

∫

dt e−iωt

∫

dr e−ik·r[c(r, t) − ca], (32)

qkω =

∫

dt e−iωt

∫

dr e−ik·rq(r, t). (33)

Writing Eq. (31) in momentum-frequency space and comparing with the Fourier transform

of Eq. (30), we find that the spectrum of equilibrium fluctuations is (after integrating out

ω)

〈ck c−k〉 =
Q

2D
. (34)

Hence, using (30), we obtain Q = 2Dca.
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Similarly, in order to determine I, we just note that the equilibrium distribution of a

curved interface is given by the Boltzmann distribution

P ({ζ}) ∼ exp

[

−
H({ζ})

kBT

]

, (35)

H being a functional that measures the amount of energy needed to create a perturbation

ζ(x, t) about the mean interface height. Moreover, as we are assuming a constant surface

tension γ,

H({ζ}) = γ

∫ L/2

−L/2

dx
[

√

1 + (∂xζ)2 − 1
]

≃
γ

2

∫ L/2

−L/2

dx (∂xζ)2, (36)

provided the perturbation, ζ , is small enough. The distribution (35) leads to a fluctuation

spectrum at equilibrium (for a system with lateral dimension L → ∞) of the form

〈ζkζ−k〉 =
kBT

γk2
. (37)

Introducing the boundary condition (26) into the equation for the velocity (27) and lineariz-

ing with respect to ζ , we obtain the following algebraic equation in Fourier space,

ζkω =
ΩkD

iω + ΩkDΓk2
χkω, (38)

where we have neglected the surface diffusion terms. Therefore, integrating 〈ζkω ζk′ω′〉 in k′

and ω′ and comparing the ensuing fluctuation spectrum to Eq. (37) we find

I =
2ΓkBT

ΩkDγ
=

2c0
eq

kD
. (39)

Finally, in order to calculate P we assume that the fluctuations due to each relaxation

mechanism are independent of one another. In this respect, we take the chemical potential

difference between the interface and the vapor to be given by [29, 30] µ = Ω δH
δζ

, where δ/δζ

denotes functional derivative. Linearizing the equation for the velocity, and considering only

the contribution due to surface diffusion, we get

∂tζ =
ΩνsDs

kBT
∇2

sµ + ηSD =
Ω2νsDs

kBT
∇2

s

δH

δζ
+ ηSD, (40)

where ∇2
s is the Laplace-Beltrami (surface) Laplacian, and ηSD is a noise term related to

the fluctuations of the surface diffusion current. To ensure that (35) is the equilibrium

distribution, this noise term must satisfy the fluctuation-dissipation theorem [43], that here

reads

〈ηSD(x, t) ηSD(x′, t′)〉 = 2Ω2νsDs

(

−∇2
s

)

δ(x − x′)δ(t − t′). (41)

Therefore, comparing Eq. (40) to Eq. (27) we find that −Ω∇s · p = ηSD and consequently

P = 2Dsνs.
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III. LINEAR STABILITY ANALYSIS

Eqs. (25)-(28) provide a full description of diffusive growth systems including fluctua-

tions. They thus generalize the classical model of CVD and can also described (through the

appropriate mapping, as seen above) simplified ECD systems. However, such a stochastic

moving boundary problem is very hard to handle for practical purposes. In this section we

will reformulate it into an integro-differential form that will allow us to derive (perturba-

tively) an approximate evolution equation for the interface height fluctuation, ζ(x, t). In

this respect, we will use a technique based on the Green function theorem which has been

successfully applied to other similar diffusion problems [41, 42]. For brevity, we show here

the main results leaving the technical details for the interested reader in the appendices.

Our point of departure is the integro-differential equation

c(r, t)

2
= ca −

∫ t

−∞

dt′

[

∫

∞

−∞

dx′

(

V +
∂ζ ′

∂t′

)

c′G − D

∫

ζ′
ds′
(

c′
∂G

∂n′
− G

∂c′

∂n′

)

]

z′=ζ′

− σ(r, t),

(42)

where G is the Green function pertinent to the present diffusive problem. The single Eq. (42)

relates the concentration at the boundary with the surface height, and is shown in Appendix

A to be actually equivalent to the full set of equations (25)-(28), providing essentially the

so-called Green representation formula for our system [44]. Unfortunately, Eq. (42) is still

highly nonlinear and has also multiplicative noise (through the noise term σ, see App. A).

Notwithstanding, it will allow us to perform a perturbative study in a simpler way.

First, let us consider solutions of Eq. (42) that are of the form c = c0+c1, where c0 stands

for the part associated with the flat (i.e., r-independent) front solution, and c1 is a small

perturbation of the same order as the height fluctuation ζ(x, t). Hence, to lowest order in

the latter and its derivatives (see App. B),

c0 =
V ca + kDc0

eq

V + kD

. (43)

One remarkable feature of the Green function representation is that, from the knowledge of

the concentration at the boundary, we can extrapolate the value of the particle concentration

everywhere. Thus, from Eq. (42) and using (A7) we find

c0(z) = ca + (c0 − ca)e
−zV/D. (44)

This equation has been theoretically obtained and experimentally verified by Léger et al. [40].
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We now proceed with the next order of the expansion. At this order we already obtain a

proper (albeit linear) evolution equation for the interface, which moreover contains all the

noise terms contributions, that is (see App. C),

∂tζk(t) = ωkζk(t) + ηk(t), (45)

where ωk is a function (dispersion relation) of wave-vector k whose form may change with

the values of the phenomenological parameters (see below), and gives the rate at which a

periodic perturbation of the flat profile grows (if ωk > 0) or decays (if ωk < 0) as a function

of k. Note that, being linear, Eq. (45) can be exactly solved.

It turns out that the behavior of ωk can be most significantly studied as a function of

the values of the kinetic coefficient kD, as anticipated in Secs. IIA and IIB. Specifically, we

analyze separately the case in which surface kinetics is instantaneous (that is, the sticking

probability is high) and all other cases in which the attachment rate is finite.

A. Non-instantaneous surface kinetics (kD < ∞)

For a finite value of the kinetic coefficient kD, we cannot obtain (even in the zero-noise

limit) the linear dispersion relation ωk in a closed analytic form, unless we perform a large

scale (k → 0) approximation. Thus, we can analyze implicitly the zeros of the function Tkω

defined in (C5), which yield the required form of ωk as a function of wave-vector [45]. In

the large scale limit we find [46]

ωk = a2k
2 − a4k

4, (46)

where

a2 =
DkD

V
∆, a4 =

DkDlDd0∆

V

[

1 −
√

V d0

D

] . (47)

where ∆ = 1−d0/lD. The two constants appearing in ∆ are the capillarity length (d0 ≡ ΓΩ)

and the diffusion length (lD ≡ D/V ). If ∆ < 0, then k = 0 is the only zero of ωk, and

since a2 < 0 all Fourier modes ζk(t) of the height fluctuation are stable, since they decay

exponentially in time within linear approximation.

On the contrary, of ∆ > 0, then a2 and a4 are both positive and there is a band of

unstable modes for all k ∈ (0, k∗), with k∗ =
[

V
Dd0

(

1 −
√

V d0

D

)]1/2

. For these values of the

wave-vector, ζk(t) grows exponentially in time within linear approximation. A maximally
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unstable mode exists corresponding to the maximum positive value of ωk, whose amplitude

dominates exponentially all other and leads to the formation of a periodic pattern. Under

these parameter conditions, the dispersion relation (46) is that of the linear Kuramoto-

Sivashinsky (KS) equation (see Fig. 3) [22].

Although the above linear dispersion relation contains O(k4) terms, typical of relaxation

by surface diffusion [29, 30], these originate as higher order contributions in which diffusion

(D), aggregation (kD), and surface tension (Γ) become coupled. We can also include proper

surface diffusion into the analysis, for which we simply have to replace a4 by a4 + BΩ(V +

kD)/V , with B as in (29), which merely shifts k∗ closer to zero. In this case, the band of

unstable modes shrinks, which is consistent with the physical smoothing effect of surface-

diffusion at short lengt

0 0.2 0.4 0.6 0.8 1.0 1.2

k / k
*

-1.0
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1.0

ω
k / 

ω
m

FIG. 3: Linear dispersion relations given by Eqs. (46) (dashed line) and (48) (solid line), normalized

by the growth-rate of the most unstable mode, vs spatial frequency k normalized by k∗. Both axes

are in arbitrary units.

B. Instantaneous surface kinetics (kD → ∞)

If the sticking probability is essentially one, as seen above kD → ∞. This fast attachment

condition occurs in many irreversible growth processes [47]. Following a similar procedure

(and long wavelength approximation) as the one that led us to the KS dispersion relation

in the previous section, we now get

ωk = D

(

Γ2Ω2

2
−

BΩ

D

)

k4 −
3ΓΩV k2

2
+ |k|(V −ΓΩDk2)

[

1−
ΓΩV

D
+

(

Γ2Ω2

4
−

BΩ

D

)

k2

]1/2

.

17



This expression has several interesting limits. For instance, if we neglect surface tension and

surface diffusion terms (that is, for Γ = B = 0), then ωk = V |k|, the well-known dispersion

relation of the Diffusion Limited Aggregation (DLA) model [47]. In this case, every spatial

length scale is unstable, the shortest ones (large k values) growing faster than the larger

ones. Thus, in such a case the aggregate consists of wide branches plenty of small tips.

Moreover, there is actually no characteristic length scale in the system, hence the aggregate

has scale invariance (that is, it is self-similar).

If we only neglect the surface diffusion term and, since ΓΩ ≡ d0 (the capillarity length)

is typically in the range 10−7 − 10−6 cm, and D/V ≡ lD (the diffusion length) is close to

10−1 − 10−2 cm, we can write

ωk ≃ V |k|(1 − d0lDk2), (48)

which is the celebrated Mullins-Sekerka (MS) dispersion relation [48, 49] (see Fig. 3), ubiq-

uitous in growth systems in which diffusive instabilities (induced by shadowing of large

branches over smaller surface features) compete with relaxation by surface tension. This

dispersion relation has been experimentally verified in several ECD systems [50, 51, 52],

and has actually been theoretically proposed before for ECD by Barkey et al. [53] (although

under non-galvanostatic conditions).

However, in many diffusive growth systems both surface tension and surface diffusion are

non-negligible; considering again the physical hypothesis d0 ≪ lD and a long-wavelength

approximation, we get

ωk = V |k|[1 − (d0lD + BΩ/2D)k2] − BΩk4. (49)

Nevertheless, there are e.g. some CVD conditions [19, 54], for which the vapor pressure

in the dilute phase is so low that relaxation by evaporation/condensation is negligible in

practice. In such a case, the dispersion relation is provided by (49) with an effective zero

value for d0.

Finally, there may be physical situations in which quite analogously to the KS case seen

above, the last dispersion relations [Eqs. (48) through (49)] show the competition between

mechanisms which tend to destabilize the interface and other which tend to stabilize it.

From this competition, a characteristic length-scale arises, λm, which grows exponentially

faster than the others (λm = 2π/km, with km being the value for which ωk is a positive

maximum).
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In summary, we see that, in reducing the efficiency of attachment from complete (kD →

∞) to finite (kD < ∞), the symmetry of the dispersion relation changes so that non-local

terms like odd powers of |k| are replaced by local (linear) interactions. For instance, −k2ζk(t)

is the Fourier transform of the local term ∂2
xζ(x, t), while |k|ζk(t) cannot be written as (the

transform of) any local differential operator acting on ζ(x, t). This result can be understood

heuristically: if the sticking probability is small, then particles arriving at the interface do

not stick to it the first time they reach it, but they can explore other regions of the aggregate.

This attenuates the non-local shadowing effect mentioned above, so that growth becomes

only due to the local geometry of the surface.

Although the kD → ∞ limit is a mathematical idealization, for practical purposes we can

determine under which conditions it is physically attained. Thus, if we introduce Eq. (44)

describing the concentration field for a flat interface into the boundary condition (26), the

latter takes the form
c − c0

eq

D/kD
=

c − c0

D/V
. (50)

The term D/V is the diffusion length; hence, analogously, we can define D/kD as a sticking

length. Physically, this length can be seen as the typical distance traveled by a particle

between its first arrival at the interface and its final sticking site. We can neglect this length

scale if the sticking probability is close to unity. On the contrary, if kD → 0, the distance

that the particle can explore before attaching is infinite. Therefore, taking Eq. (50) into

account, we can say that the kD → ∞ limit describes accurately the problem when kD ≫ V ,

and in such a case the diffusion length and the capillarity length determine the characteristic

length-scale of the system.

IV. NONLINEAR EVOLUTION EQUATION

In this section we proceed one step further with our perturbative approach by including

the lowest order nonlinear contributions to Eq. (45). If we evaluate the Green function of

the problem at the boundary we find

G(r − r′, τ) =
Θ(τ)

4πDτ
exp

[

−
(x − x′)2

4Dτ
−

(

ζ − ζ ′ + V τ
)2

4Dτ

]

, (51)

where τ = t − t′. Expanding the last term in the argument of the exponential as a series

in ζ we get (ζ − ζ ′)2 + 2V (ζ − ζ ′)τ + V 2τ 2. The second and third terms were already taken
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into account before in the linear analysis, so the only nonlinear contribution in Eq. (51) is

related to the first term, (ζ − ζ ′)2, that introduces a correcting factor exp[−(ζ − ζ ′)2/(4Dτ)]

which is only significant when ζ ′ ≃ ζ , hence we can replace ζ ′ − ζ by the lowest term in its

Taylor expansion, to get

exp

(

−
(ζ − ζ ′)2

4Dτ

)

≃ 1 −
(∂xζ)2(x′ − x)2

4Dτ
. (52)

By incorporating this contribution into the formulae of appendices A through C, the conse-

quence can be readily seen to be the addition of a mere term equal to the (Fourier transform

of) V (∂xζ)2/2 to the right hand side of Eq. (45), resulting into an evolution equation with

the form

∂tζk(t) = ωkζk(t) +
V

2
N [ζ ]k + ηk(t), (53)

where N [ζ ]k is the Fourier transform of N [ζ ] = (∂xζ)2. Note that the nonlinear term

obtained is precisely the characteristic KPZ nonlinearity as in Eq. (1), that appears here with

a coefficient equal to half the average growth velocity, agreeing with standard mesoscopic

arguments [16]. Moreover, as is well known [14], this is the most relevant nonlinear term

(asymptotically) that can be obtained for a non-conservative growth equation such as Eq.

(42), hence any other nonlinear term will not change the long time, long scale behavior of

the system. As we have shown above, for small sticking ωk is given by Eq. (46) and for

large sticking is given by Eq. (49). In all cases the noise correlations involve constant terms,

as well as terms that are proportional to successively higher powers of k. By retaining only

the lowest order contributions in a long-wavelength and quasistatic approximation, from Eq.

(C8) we obtain

〈ηkωηk′ω′〉 = (Π0 + Π2k
2)δ(k + k′)δ(ω + ω′), (54)

where

Π0 =







V c0(1 + 2V
kD

), kD < ∞

V c0
eq, kD → ∞

, (55)

and

Π2 =







2D2c0(
1
V

+ 2
kD

) + 2Dsνs(1 + V
kD

)2, kD < ∞

2D2c0
eq/V + 2Dsνs, kD → ∞

(56)

where Eq. (43) for c0 is to be used in the case of finite kinetics. In general, parameter

Π0 provides the strength of non-conserved noise, while Π2 measures the contribution of

conserved noise [55] to the interface fluctuations. The presence of conserved noise can
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naturally modify some short length and time scales of the system but, in the presence of

non-conserved noise, it is known to be irrelevant to the large scale behavior. Thus, Π2 will

be neglected in the numerical study performed below.

For the case of finite kinetic coefficient, the evolution equation (53) is the stochastic

generalization of the KS equation [23, 24, 25]. In the case of fast attachment kD → ∞,

the resulting interface equation combines the linear dispersion relation of MS with the KPZ

nonlinearity. In this sense it employs two “ingredients” that seem ubiquitous in growth

systems, so we find it remarkable the fact that (to the best of our knowledge) its detailed

dynamics has not been reported so far. The purpose of the next section is to report a

numerical study of this equation in order to clarify the similarities and differences to its

finite attachment counterpart .

A. Numerical results

1. The pseudo-spectral method

As noted above, although the shape of the nonlinear Eq. (53) is common to both stick-

ing limits, their dispersion relations make them very different physically. Thus, while the

linear terms of the KS equation are local in space, linear terms corresponding to MS disper-

sion relation cannot be written in terms of local spatial derivatives. Therefore, we cannot

perform a standard finite difference discretization in order to implement its numerical in-

tegration [55]. Rather, in order to integrate numerically Eq. (53) we will resort to the

so-called pseudo-spectral methods that make use both of real and Fourier space representa-

tions. Such techniques have been successfully used e.g. in many instances of the Physics of

Fluids [56], and are being used more recently in the study of stochastic partial differential

equations [57, 58, 59, 60, 61].

As we are interested in the qualitative scaling properties of Eq. (53), rather than, say, in

a quantitative comparison to a specific physical system, we introduce positive constants ν,

K, B, and λ, that allow us to write the equations in the more general form for each limit:

∂tζk(t) = (νk2 − Kk4)ζk +
λ

2
N [ζ ]k + ηk(t), (57)

∂tζk(t) = (ν|k| − K|k|3)ζk +
λ

2
N [ζ ]k + ηk(t), (58)
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where, in order to stress the similarities between the two interface equations, we have ne-

glected in (58) the O(k4) terms, given that their stabilizing role is already played by the

O(|k|3) term. In what follows, we will only refer to the new parameters, which will later be

estimated in the next section when we analyze different experimental conditions.

In order to integrate efficiently Eq. (53) we use a pseudo-spectral scheme. This numerical

method is detailed in [61] and employs an auxiliary change of variable that allows to estimate

the updated value of ζk as

ζk(t + ∆t) = eωk∆t

(

ζk(t) +
λ

2
∆tN [ζ(t)]k

)

+ rk(t), (59)

where the noise term rk(t) is conveniently expressed as

rk(t) =

√

(Π0 + Π2k2)
e2ωk∆t − 1

2ωk∆x
vk(t), (60)

with vk(t) being the Fourier transform of a set of Gaussian random numbers with zero mean

and unit variance [58]. Regarding the explicit calculation of the nonlinear term in Eq. (59),

we perform the inverse Fourier transform of −ikζk and take the square of it in real space,

so that we explicitly avoid nonlinear discretization issues [57]. However, in this procedure

aliasing issues arise [56], that we avoid by extending the number of Fourier modes involved

in the integration, and using zero-padding, see details in [56, 57].

2. Numerical integration

As mentioned, the noisy KS equation, Eq. (57), has been extensively studied in the

literature, so we will concentrate in this section on the novel Eq. (58). Its behavior will help

us to understand the evolution of the interface in the kD → ∞ cases.

The linear regime is very similar for both equations, as one might naively expect. In

fact, we find that both systems feature similar power spectral densities (or surface structure

factors), S(k, t) = 〈ζk(t)ζ−k(t)〉, see Fig. 4. This can be easily understood by inspection of

the analytic result for S(k, t) obtained from the exact solution of Eq. (45),

S(k, t) = Π0
e2ωkt − 1

2ωk
, (61)

where the corresponding dispersion relations are displayed in Fig. 3. By simple inspection

of Fig. (4) one is tempted to say that both Eqs. (57) and (58) have a similar behavior so
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FIG. 4: (color online) Power spectral density, S(k, t), from numerical simulations for a L = 1024

system with ν = K = 1, Π0 = 10−2, λ = 0 (i.e., linearized equations), averaged over 103 realiza-

tions, at times t = 4, 8, 10 and 20 for: (a) Eq. (57) (circles) and (b) Eq. (58) (circles). Blue solid

lines represent the exact solution, Eq. (61), for each case. All axes are in arbitrary units.

that, a priori, KPZ scaling might be expected in the asymptotic regime also for the latter.

However, for this fast kinetics equation, we show in Fig. 5 that the growth exponent β

characterizing the power-law growth of the surface roughness or global width W (t) ∼ tβ,

where W 2(t) = (1/L2)
∑

k S(k, t) [14, 15], is much larger at long times than the expected

KPZ value βKPZ = 1/3. A rationale for such a long-time behavior of Eq. (58) can be

already provided by simple dimensional analysis. Thus, under the scale transformation

t → bzt, k → b−1k, ζk → bα+1ζk, Eq. (58) becomes

∂tζk = bz−1ν|k|ζk − bz−3K|k|3ζk + bα+z−2 λ

2
N [ζ ]k + bz/2−α−1/2ηk. (62)

If we introduce the exact one dimensional KPZ exponents (α = 1/2, z = 3/2), it is easy to see

that in the hydrodynamic limit (that is, when b → ∞) the most relevant term in the equation

is not the KPZ term but, rather, the lowest order linear term |k|ζk. Preliminary dynamic

renormalization group calculations [62] seem to provide the same result. The present scaling

argument provides moreover the exponent values α = β = z = 1 at the stationary state.

These values are compatible with those obtained from numerical simulations of Eq. (58),

as displayed in Figs. 5 and 6. The numerical values we obtain for the exponents are α =

1.00 ± 0.05, β = 1.05 ± 0.05 and z = 0.95 ± 0.05, thus they are in good agreement with the

ones predicted by dimensional analysis. In order to check the consistency of our numerical

estimates [63, 64], in the inset of Fig. 6 we show the collapse of the power spectrum density
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using these exponent values. Collapses are satisfactory, including the behavior of the scaling

function for the width, indicated by a solid line in the inset of Fig. 5. The discrepancies

in the collapsed curves for large kt1/z values is due to the existence of a short scale scaling

different from the asymptotic one.

From our numerical results, we conclude that the non-linear regime as described by Eq.

(58), corresponding to instantaneous kinetics, is very different from that for slow kinetics,

as represented by the noisy KS equation. Thus, in both cases the KPZ nonlinearity is able

to stabilize the system and induce power law growth of the surface roughness, associated

with kinetic roughening properties. However, the universality class of Eq. (58) is not that

of the KPZ equation but, rather, it is a new class completely determined by the |k| term in

the linear dispersion relation. Note moreover that the new exponents associated with the

asymptotic regime for this equation fulfill accidentally the Galilean scaling relation α+z = 2

[14, 16]. We describe this property as accidental due to the fact that Eq. (58) is not Galilean

invariant. The easiest way to confirm this is to check for the scaling behavior of a stable

version of Eq. (58) in which we take negative ν values for which all modes are linearly

stable. Fig. 7 shows on the left panel the power spectral density in this case, that behaves as

S(k) ∼ 1/k for long distances. Moreover, on the right panel of this figure we plot the time

evolution of the global roughness for the same system, that behaves as W (t) ∼ log t for long

times before saturation. From these data we conclude the exponent values are z = 1, and

α = 0 (log), which do not satisfy the scaling relation implied by Galilean invariance. Such

a stabilized version of Eq. (58) has been studied in the context of diffusion-limited erosion

[65].

V. COMPARISON WITH EXPERIMENTS AND DISCRETE MODELS

In this section, we focus on the applications of the model equations to understand and

explain some experimental results, qualitatively and quantitatively and, besides, compare

our results from continuum theory to relevant discrete models of diffusion limited growth.
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FIG. 5: (color online) Global width vs time for a system with ν = K = λ = 1,Π0 = 10−2 obtained

numerically for Eq. (58), for increasing system sizes, L = 32, 64, 128, 256, 512 and 1024, bottom

to top, averaged over 103 realizations. The red dashed line is a guide to the eye with slope 1.05

suggesting the asymptotic value of β. Inset: Collapse of W (t) using α = 1.00, β = 1.05, and

z = 0.95. The blue line has slope 1.00, showing the consistency of our estimate for α. Axes in the

main panel and in the i
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FIG. 6: (color online) Power spectrum vs spatial frequency k with the same parameters as in Fig.

5 and L = 1024. Different curves stand for different times (the one at the bottom is for the earliest

time). The dashed line is a guide to the eye with slope −3, compatible with α = 1. Inset: Collapse

of S(k, t) using α = 1.00, β = 1.05, and z = 0.95. Axes in the main panel and in the inset are all

in arbitrary units.
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FIG. 7: (color online) Left: Power spectral density vs wave vector for Eq. (58) with ν = −1, K = 1,

λ = 4, Π0 = 10, L = 8192, and averages over 100 noise realizations. The dashed line is a guide

to the eye with slope −1 [that is, α = 0 (log)]. Right: Global roughness vs time for the same

system as in the left panel. Note the semilog representation. The dashed line is a guide to the eye

representing W (t) ∼ log t before saturation. All axes are in arbitrary units.

A. Experiments

From the experimental point of view, it is very difficult to determine if the dispersion

relation characterizing a specific physical system is the MS or, rather, the KS one, because

they are both very similar except very near k = 0 (see Fig. 3). In principle, such a dis-

tinction would be very informative, since it could provide a method to assess whether the

dynamics is diffusion limited (kD → ∞), or else reaction limited (kD ≪ V ). Several previous

theoretical works in this field [66, 67] predict, qualitatively, a KS dispersion relation, while

other [53], predict a dispersion relation similar to the one of MS. All those studies are not

necessarily incompatible with one another because they are considering different experimen-

tal conditions. Moreover, to our knowledge, there are only a few experimental reports in

which the dispersion relation is measured, and in most cases the authors presume that it can

be accounted for by MS [50, 51, 52]. Notwithstanding, within experimental uncertainties

that are specially severe at small wave-vectors, they could all equally have been described

by the KS dispersion relation.

Another way to distinguish which is the correct effective interface equation that describes

a given system could be the value of the characteristic length associated with the most

unstable mode that can be measured (which in fact would be essentially the characteristic
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length-scale that could observed macroscopically for the system). Unfortunately, from Eq.

(47) one has that, for d0 ≪ lD, then km = (2lDd0)
−1/2 for the KS and km = (3lDd0)

−1/2 for

the MS dispersion relation. Hence, except for a constant numerical value of order unity, both

cases provide a characteristic length scale that depends equally on physical parameters, while

the significant parameter, kD, only modifies ωm, namely, the characteristic time at which the

instability appears (which is about ω−1
m ). Thus, in order to clarify the nature of the growth

regime (diffusion or reaction limited), one should rather study the long time behavior of the

interface.

Despite these difficulties, we can sill try to interpret some experimental results reported

in the literature. Lèger et al. [38, 40, 68] have presented several exhaustive works dealing

with ECD of Cu under galvanostatic conditions. In addition to properties related to the

aggregate, they also provide detailed information about the cation concentration. Their

main result in this respect is that such concentration obeys experimentally Eq. (44) as we

anticipated above. It can also be seen that the product aggregates are branched and that

the topmost site at every position x defines a rough front growing with a constant velocity.

In Fig. 8 of Ref. [40] the authors plot the branch width against the diffusion length. From

that figure, it is clear that λm and lD are not linearly related. Moreover, they seem to better

agree with the present prediction from either of our effective interface equations, λm ∝ l
1/2
D ,

than with the linear behavior argued for in [40].

Another important experimental feature is the relation between λm and Ca. From Eq.

(20) we know that Ω = (1 − tc)/Ca, then d0 = ΩΓ = Ωγ/RT , so that the characteristic

length scale, λm, will be proportional to C
−1/2
a . Thus, one would expect the branches to be

narrower as we increase the initial concentration, consistent with the patterns obtained by

Lèger et al.

We will try also to interpret the ECD experiments of Schilardi et al. [18]. They have

measured the interface global width considering that the topmost heights of the branches

provide a well defined front. Thus, the time evolution of the global width, or roughness,

presents three different well defined regimes: A short initial transient, which cannot be

accurately characterized by any power-law due to the lack of measured points, is followed

by an unstable transient. We consider the system unstable in the sense that the average

interface velocity is not a constant but, rather, grows with time. Finally, the system reaches a

regime characterized by exponent values that are compatible with those of KPZ the equation,
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while the aggregate grows at a constant velocity. These regimes again resemble qualitatively

the behavior expected for the noisy KS equation (57).

Moreover, we can check whether the order of magnitude of the experimental parameters

is compatible with our predictions. First, we estimate km from mean width of the branches

within the unstable regime. This width is about 0.05 mm [18], hence km ≃ 1.3 × 103

cm−1. Besides this, the mean aggregate velocity at long times is V ≃ 2 × 10−4 cm s−1,

and the diffusion coefficient is D ≃ 10−5 cm2 s−1, so that the diffusion length is about

lD = D/V ≃ 0.05 cm. These magnitudes allow us to calculate the capillarity length d0 =

1/2lDk2
m ≃ 5× 10−6 cm (which is of the same order as we considered in our approximations

above, and much smaller than the diffusion length). Furthermore, the instability appears at

times of order 1/ωm. In the experiment this time is about 6 min. Thus, ωm ≃ 3× 10−3 s−1.

Finally, as ωm = kDlDk2
m/2, then kD ≃ 6 × 10−8 cm s−1 ≪ V , which provides a consistency

criterion for the validity of our approximations and of our predictions.

As a final example, let us perform some comparison with the mentioned experiments of

Pastor and Rubio [52, 69]. At short times, they obtain compact aggregates with exponent

values [52] α = 1.3 ± 0.2, αloc = 0.9 ± 0.1, z = 3.2 ± 0.3, and β = 0.4 ± 0.08. This

means that the interface is superrough (α > 1). After this superrough regime, the aggregate

becomes unstable and the dispersion relation has the MS form. The fact that the aggregates

are compact (and not ramified) seems to show that surface diffusion is an important growth

mechanism in these experiments (which is also consistent with the small value of the velocity,

V ≃ 4 µm/min). Consequently, we can use Eq. (58) with an additional surface diffusion

contribution [−Bk4ζk(t)] to understand the behavior of the experiments. We choose the

parameters ν = 0.25, K = Π0 = 1 and λ = Π2 = 0 (because the velocity is small and we are

only interested in the short time regime), for several values of B between 0 and 1 in order

to determine the influence of surface diffusion in the growth exponents. Other parameters

only change the characteristic length and time scales of the experiment. The exponents

thus obtained numerically are (with B = 0.75) β ≃ 0.39 ± 0.02, and α ≃ 1.3 ± 0.1, which

are (within error bars) equal to the experimental ones. As we have pointed out above, this

superrough regime is followed by an unstable transient characterized by the MS dispersion

relation, as has been also observed in other ECD experiments by de Bruyn [50], and Kahanda

et al. [51].

More recently, additional ECD experiments have been reported under galvanostatic con-
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ditions. E.g. in Ref. [6] three growth regimes can be distinguished: a first one at short

times, in which a Mullins-Sekerka like instability is reported, is followed by a regime in

which anomalous scaling (namely, the roughness exponents measured from the global and

local surface widths differ, α 6= αloc) [15, 63, 64] takes place, and finally at long times or-

dinary Family-Vicsek scaling [14] is recovered. Similar transitions to and from anomalous

scaling behavior have been also reported in Ref. [8]. Our present theory does not predict

the anomalous scaling regimes reported by these authors. This may be due to the small

slope condition employed in the derivation of equations (58) and (57). However, we want

to emphasize two points in this respect: (i) In Ref. [8] the authors report a transition from

rough interface behavior to mound formation. These mounds can be obtained by numerical

integration of equation (58) in 2+1 dimensions [70]. (ii) As we will show in the next section,

the theory is in good agreement with a discrete model of growth in which anomalous scal-

ing is clearly reproduced. Hopefully, a numerical integration of the full moving boundary

problem (42) would capture the anomalous scaling regime, and this will be the subject of

further work.

B. Discrete Models

As mentioned above, kD is related with the sticking probability through Eq. (5). This

probability acts as a noise reduction parameter [71] in discrete growth models, as was shown

e.g. in [72, 73, 74] for the Multiparticle Biased Diffusion Limited Aggregation (MBDLA)

model, used to study ECD growth. In particular, MBDLA has been seen to describe quanti-

tatively the morphologies obtained in [18]. In MBDLA, by reducing the sticking probability

the asymptotic KPZ scaling is indeed more readily achieved, reducing the importance of

pre-asymptotic unstable transients, as illustrated by Fig. 8 of [74]. Hence, noise reduction is

not a mere computational tool for discrete models but, rather, it can be intimately connected

with the surface kinetics via Eqs. (5) and (26).

MBDLA with surface diffusion also predicts the existence of a characteristic branch width.

This is shown in Fig. 8 in which the power spectral density is plotted and compared with

the one obtained from the noisy KS equation, proving the equivalence between both descrip-

tions of ECD. These results are reinforced by the fact that, as shown in Ref. [74], the cation

concentration obeys Eq. (44), and the branch width dependence on the cation concentration
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FIG. 8: (color online) Power spectrum obtained from MBDLA simulations (solid line) with r = 0.5,

p = 0.5, s = 1, c = 1 (taken from Fig. 15 in [74], by permission), and Eq. (57) with ν = 1, K = 1/4,

λ = 40, Π0 = 10−2, L = 512 (dashed line), averaged over 105 realizations. For the sake of clarity,

the latter has been vertically offset. Straight blue lines are guides to the eye having slope −4. Axes

are in arbitrary units.

is consistent with the relation λm ∝ C
−1/2
a . Moreover, in simulations of MBDLA, an un-

stable transient was found before the KPZ scaling regime, being characterized by intrinsic

anomalous scaling, as recently observed in the experimental works by Huo and Schwarzacher

[75, 76]. As mentioned, probably the absence of such an anomalous scaling transient in our

continuum model is related to the small slope approximation, and we expect to retrieve it

from a numerical integration of the full moving boundary problem.

VI. CONCLUSIONS

In this paper we have provided a derivation of stochastic interface equations from the

basic constitutive laws that apply to growth system in which aggregating units are subject

to diffusive transport, and attach only after (possibly) finite reaction kinetics. Our derivation

seems to be new for this class of systems, and allows to relate the coefficients in the effective

interface equation with physical parameters, like the sticking parameter, physical surface

tension and size of aggregating units, etc. We have seen that the shape of the equation

describing the time evolution of the aggregate interface changes as a function of the sticking

probability. For very high interface kinetics non-local shadowing effects occur, while for
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finite kinetics non-local shadowing yields to morphological instabilities of a local nature.

Thus, qualitatively the behavior of the system for generic parameter conditions roughly

consists of an initial transient associated with morphological instabilities in which typical

length scales are selected (thus breaking scale invariance), that is followed by a late time

regime in which the interface displays kinetic roughening. However, the universality class of

the latter differs, being of the KPZ class only for finite attachment kinetics, while it becomes

of a new, different, non-KPZ type for infinitely fast attachment, as predicted by the new

interface equation we obtain in the latter condition. While in previous reports [15, 17, 20]

we have interpreted the long unstable transients as a potential cause for the experimental

difficulty in observing KPZ scaling, our present results go one step further in the sense that

for fast attachment conditions we do not even expect KPZ universality in the asymptotic

state, due to the irrelevance of the KPZ nonlinearity as compared with the |k|ζk(t) term in

Eq. (58).

Comparison of our continuum model with experiments and discrete models seem to sup-

port the above conclusions. Nevertheless, our results are in principle constrained by a

small-slope approximation. In view (specially under the fast kinetics conditions) of the

large roughness exponent values that characterize the long time interfaces as described by

our effective interface equations, it is natural to question whether the same scenario holds

for the full (stochastic) moving boundary problem. Moreover, our small slope equations

do not account for anomalous scaling, which is otherwise seen in experiments and in the

MBDLA model, so that integration of the complete system (25)-(28) seems indeed in or-

der. Technically, systems of this type pose severe difficulties even to numerical simulations

(mostly related to front tracking in the face of overhang formation). Thus, one needs to

rephrase the original continuum description (25)-(28) into an equivalent formulation that is

more amenable to efficient numerical simulation, such as e.g. a phase-field model [77]. We

are currently pursuing such type of approach, and expect to report on it soon.
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APPENDIX A: THE GREEN FUNCTION TECHNIQUE

This technique has been used in other similar problems, such as solidification [41] or

epitaxial growth on vicinal surfaces [42], and is based on the use of the Green theorem [44]

to transform an integral extended over a certain domain (in our case, say, the region between

the electrodes (see Fig. 9) to an integral that is evaluated precisely at the moving boundary

(the aggregate surface).

Let us consider that the distance separating the electrodes and the lateral size of the

system are both infinite, so that the only part of the dashed line in Fig. 9 whose contribution

is non vanishing is the aggregate surface. The Green function related to Eq. (25) is the

ζ(x,t) ds

A

FIG. 9: Integration domain, A, and its boundary (solid line) used in Green theorem. The infinites-

imal arc length along the moving boundary ζ(x, t) is given by ds.

solution of
(

∂

∂t′
+ D∇′2 − V

∂

∂z′

)

G(r − r′, t − t′) = −δ(r − r′)δ(t − t′), (A1)

where we have made a change of coordinates to a frame of reference moving with the average

growth velocity, V . To evaluate G, we use its Fourier transform

G(r − r′, t − t′) =
1

(2π)3

∫

dω eiω(t−t′)

∫

d2k eik·(r−r′)Gkω, (A2)
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where r = xx̂ + zẑ and k = kxx̂ + kzẑ. Hence, Eq. (A1) becomes

Gkω =
1

Dk2 + iω − iV kz
, (A3)

with k2 = k2
x + k2

z . Therefore, integrating Eq. (A2) we find

G(r − r′, t − t′) =
Θ(t − t′)

4πD(t − t′)
exp

[

−
(x − x′)2

4D(t − t′)
−

(

z − z′ + V (t − t′)
)2

4D(t − t′)

]

, (A4)

Θ(t−t′) being the Heaviside step function. In the following, we will use for brevity τ ≡ t−t′.

It can be straightforwardly seen that the following relations are satisfied:

lim
τ→0+

G(r − r′; τ) = δ(r− r′), (A5)

lim
τ→−∞

G(r − r′; τ) = 0, (A6)

∫ t

−∞

dt′
∫

∞

−∞

dx′G =







exp[−(z − z′)V/D]/V si z > z′,

1/V si z < z′,
(A7)

We can now rewrite Eq. (25) in terms of the variables r′ and t′,

(

∂

∂t′
− D∇′2 − V

∂

∂z′

)

c′ = −∇′ · q′ (A8)

Adding Eq. (A8) multiplied by G(r − r′, t − t′) to Eq. (A1) multiplied by c′ ≡ c(x′, z′; t′),

and integrating t′ in (−∞, t − ǫ] and r′ in the set A = (−∞,∞) × [ζ(x′, t′),∞), see Fig. 9,

∫ t−ǫ

−∞

dt′
∫

A

d2r′
∂

∂t′
(c′G) − V

∫ t−ǫ

−∞

dt′
∫

A

d2r′
∂

∂z′
(c′G) +

D

∫ t−ǫ

−∞

dt′
∫

A

d2r′
(

c′∇′2G − G∇′2c′
)

= −

∫ t−ǫ

−∞

dt′
∫

A

d2r′G∇′ · q′ (A9)

The first term on the left hand side can be easily evaluated with the use of Eqs. (A5) and

(A6). Thus,

lim
ǫ→0

∫ t−ǫ

−∞

dt′
∫

A

d2r′
∂

∂t′
(c′G) = c(r; t) +

∫ t

−∞

dt′
∫

∞

−∞

dx′
∂ζ ′

∂t′

[

c′G
]

z′=ζ′
, (A10)

where ζ ′ stand for ζ(x′, t′). Analogously, we can integrate the second term on the left hand

side of Eq. (A9), using (A7)

lim
ǫ→0

−V

∫ t−ǫ

−∞

dt′
∫

A

d2r′
∂

∂z′
(c′G) = −ca + V

∫ t

−∞

dt′
∫

∞

−∞

dx′

[

c′G
]

z′=ζ′
. (A11)
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Finally, using the identity c′∇′2G−G∇′2c′ = ∇′ · (c′∇′G−G∇′c′), and applying the Green

theorem on the domain A, we get

lim
ǫ→0

D

∫ t−ǫ

−∞

dt′
∫

A

d2r′
(

c′∇′2G − G∇′2c′
)

= −D

∫ t

−∞

dt′
∫

ζ′
ds′
(

c′
∂G

∂n′
− G

∂c′

∂n′

)

, (A12)

ds′ being the arc length, see Fig. 9, from which we obtain the integro-differential equation

c(r, t) = ca −

∫ t

−∞

dt′

[

∫

∞

−∞

dx′

(

V +
∂ζ ′

∂t′

)

c′G −

D

∫

ζ′
ds′
(

c′
∂G′

∂n′
− G

∂(c′0 + c′1)

∂n′

)

]

z′=ζ′

− σ(r, t), (A13)

where

σ(r, t) =

∫ t

−∞

dt′
∫

∞

−∞

dx′

∫

∞

ζ′
dz′G∇′ · q′ (A14)

is a term related to the diffusion noise.

As we seek to determine c everywhere, we need to know its value at the boundary.

Considering the limit in which r belongs to that boundary (hereafter, we will denote it as

rb), the term ∂G/∂n′ in Eq. (A13) is singular. Fortunately, this singularity is integrable, as

a result of which we obtain an additional term as [42]
∫

r/∈ζ

c′
∂G

∂n′
→

c

2D
+

∫

rb∈ζ

c′
∂G

∂n′
. (A15)

This leads to Eq. (42) of the main text, where we have omitted the subindex b for notational

simplicity.

APPENDIX B: ZEROTH ORDER CALCULATION

Writing c = c0 + c1 in Eq. (42) we get

c0

2
+

c1

2
= ca−

∫ t

−∞

dt′
∫

∞

−∞

dx′

[

V (c′0G + c′1G)+
∂ζ ′

∂t′
c′0G−D

(

(c′0+c′1)
∂G

∂n′
−G

∂(c′0 + c′1)

∂n′

)]

z′=ζ′

−σ(r, t).

(B1)

Note that, at this order, ds′ =
√

1 + (∂xζ)2dx′ ≃ dx′. We also linearly expand G, so that

G(r− r′, t − t′) ≃
(

1 − V
ζ − ζ ′

2D

)

G0, (B2)

where

G0 =
Θ(τ)

4πDτ
exp

[

−
(x − x′)2

4Dτ
−

V 2τ

4D

]

. (B3)
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In order to determine the concentration at the boundary, we must write our main equation

in terms of c0 and c1. Then, with the use of the boundary condition (26) we find

D
∂(c0 + c1)

∂n
= kD(c0 + c1 − c0

eq + Γ∂2
xζ + χ) + q · n. (B4)

Finally, putting Eqs. (B2) and (B4) into (B1) we find

c0

2
+

c1

2
= ca+

∫∫

dt′dx′

[

(

−c0
∂ζ ′

∂t′
−(kD+V/2)(c′0+c′1)+kDV

c′0
2D

(ζ−ζ ′)+kDc0
eq

(

1−
ζ − ζ ′

2D
V
)

−

− ΓkDζ ′

x′x′ + c0
ζ − ζ ′

2

(

V 2

2D
+

1

τ

)

− c0
(x − x′)∂x′ζ ′

2τ

)

G0

]

z′=ζ′

− σ̃(r, t), (B5)

with a new noise term

σ̃(r, t) =

∫ t

−∞

dt′
∫

∞

−∞

dx′

[

(kDχ′ + q′ · n′)G0 +

∫

∞

ζ′
dz′G0∇′ · q′

]

. (B6)

Despite the apparent complexity of these new equations, Eq. (B1) is linear so that Fourier

transforming it we get the following algebraic equation which relates all the zeroth order

terms
c0
kω

2
=

(

ca +
kDc0

eq

V

)

δ(k)δ(ω) −

(

V

2
+ kD

)

c0
kωG0

kω, (B7)

c0
kω being the Fourier transformation of c0 and

G0
kω =

[

4Dωi + 4D2k2 + V 2
]−1/2

, (B8)

which can be easily inverted yielding Eq. (43).

APPENDIX C: FIRST ORDER CALCULATION

From the results obtained in Apps. A and B we can find an evolution equation which

relates c1
kω and ζkω. Thus,

c1
kω

2
=

[

− iωc0 − (kD + V/2)
c1
kω

ζkω

+
1

2D

(

kDc0 − kDc0
eq

)

(

1

G0
kω

− V

)

+ ΓkDk2+

+
c0

4D

(

1

(G0
kω)2

− V 2

)

−
c0

2
Dk2

]

G0
kωζkω − G0

kωσ̃kω, (C1)

σ̃kω being the Fourier transformation of σ̃(r, t), hence

c1
kω

(

1

2G0
kω

+
V

2
+ kD

)

=

[

V

ΩD

(

1

2G0
kω

−
V

2

)

+ kDΓk2

]

ζkω − σ̃kω. (C2)
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This equation has two unknowns; hence, in order to solve it, we also need to expand Eq.

(27) in powers of c1 and ζ . Thus,

c1
kω =

(

iω

ΩkD
+ Γk2 +

B

kD
k4

)

ζkω − χkω +
ik

kD
pkω. (C3)

Combining both Eqs. (C2) and (C3), we find

Tkωζkω = βkω, (C4)

with

Tkω =

(

1

2G0
kω

+
V

2
+ kD

)(

iω

ΩkD

+ Γk2 +
B

kD

k4

)

−
V

ΩD

(

1

2G0
kω

−
V

2

)

− kDΓk2. (C5)

The new noise term βkω is the projection of all the noise terms onto the boundary, and is

given by

βkω =

(

1

2G0
kω

+
V

2
+ kD

)(

χkω −
ik

kD
pkω

)

− σ̃kω =

= DΛ
(+)
kω χkω −

ik

kD
pkω(DΛ

(+)
kω + kD) +

∫

∞

0

dz′
(

ikqx
kω + qz

kωΛ
(−)
kω

)

exp(−Λ
(−)
kω z′),(C6)

where

Λ
(±)
kω =

1

2DG0
kω

±
V

2D
. (C7)

These equations allow us to calculate the noise correlations (in Fourier space)

〈βkωβk′ω′〉 =

[

2D2c0

kD

|Λ(+)
kω |2 + 2Dc0

(

k2 + |Λ(−)
kω |2

2Re(Λ
(−)
kω )

)

+ 2Dsν
k2

k2
D

(

D2|Λ(+)
kω |2 + k2

D + 2DkDRe(Λ
(+)
kω )
)

]

×

× δ(k + k′)δ(ω + ω′). (C8)

Note that, in principle, Eq. (C4) provides us with all the information of the system at linear

order, namely, the power spectrum of ζ (by evaluating T −1
kω and then integrating out the

temporal frequency ω) or the height-height correlations (integrating out the spatial frequency

k).

In order to gain insight about the implications of this expansion in ζ , we write Eq. (C4)

as the Fourier transformation of a Langevin equation for the interface height,

[iω − ωk]ζkω = ηkω, (C9)

ωk being a function of k which we must specify from Tkω, and ηkω being a noise term related

with βkω, that is also delta-correlated,

〈ηkωηk′ω′〉 = Π(k)δ(k + k′)δ(ω + ω′), (C10)
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where Π depends, in general, on k and provides the magnitude of the noise for each Fourier

mode, see Sect. IV. Finally, by Fourier transforming the time frequency, we find the linear

stochastic partial differential equation (45).
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