23 research outputs found

    1H NMR-Linked Metabolomics Analysis of Liver from a Mouse Model of NP-C1 Disease

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link

    Differential response of the liver to bile acid treatment in a mouse model of Niemann-Pick disease type C [version 2; referees: 2 approved, 1 not approved]

    No full text
    Niemann-Pick disease type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in the NPC1 or NPC2 genes. Liver disease is also a common feature of NPC that can present as cholestatic jaundice in the neonatal period. Liver enzymes can remain elevated above the normal range in some patients as they age. We recently reported suppression of the P450 detoxification system in a mouse model of NPC disease and also in post-mortem liver from NPC patients. We demonstrated the ability of the hydrophobic bile acid ursodeoxycholic acid (UDCA) (3α, 7β-dihydroxy-5β-cholanic acid) to correct the P450 system suppression. UDCA is used to treat several cholestatic disorders and was tested in NPC due to the P450 system being regulated by bile acids. Here, we compare the effect of UDCA and cholic acid (CA), another bile acid, in the NPC mouse model. We observed unexpected hepatotoxicity in response to CA treatment of NPC mice. No such hepatotoxicity was associated with UDCA treatment. These results suggest that CA treatment is contraindicated in NPC patients, whilst supporting the use of UDCA as an adjunctive therapy in NPC patients

    Abnormal LAMP1 glycosylation may play a role in Niemann-Pick disease, type C pathology.

    No full text
    A hallmark of Niemann-Pick disease, type C (NPC) is the progressive degeneration of Purkinje neurons in the cerebellum caused by the accumulation of free cholesterol and glycosphingolipids in the lysosome. Recent studies suggest that the state of glycosylation of lysosomal membrane proteins may play a role in disease progression. Our study has identified the presence of a highly glycosylated form of Lysosome Associated Membrane Protein 1 (LAMP1) that correlated spatiotemporally with Purkinje neuron loss. This form of LAMP1 was predominantly localized to activated microglia; showing a ~5-fold increase in surface labeling by FACS analysis. This suggests a potential role for LAMP1 in the neuro-inflammatory process in these mice during disease progression. Analysis of other mouse models of neurodegeneration that exhibit neuro-inflammation showed little or no presence of this glycosylated form of LAMP1, suggesting this observation for LAMP1 is specific to NPC disease. Furthermore, early treatment of Npc1-/- mice with 2-hydroxypropyl-β-cyclodextrin (HPβCD), significantly prevented the appearance of the glycosylated LAMP1 in the cerebellum of Npc1-/- mice at 7 weeks, consistent with the prevention of neuro-inflammation in mice treated with this drug. Treatment of Npc1-/- mice with HPβCD at 7 weeks, after disease onset, did not reverse or prevent further appearance of the hyperglycosylated LAMP1, demonstrating that once this aspect of neuro-inflammation began, it continued despite the HPβCD treatment. Analysis of LAMP1 in cerebellar tissue of NPC1 patients showed a small level of hyperglycosylated LAMP1 in the tissue, however, this was not seen in the CSF of patients

    NMR analysis reveals significant differences in the plasma metabolic profiles of Niemann Pick C1 patients, heterozygous carriers, and healthy controls

    No full text
    open access articleNiemann-Pick type C1 (NPC1) disease is a rare autosomal recessive, neurodegenerative lysosomal storage disorder, which presents with a range of clinical phenotypes and hence diagnosis remains a challenge. In view of these difficulties, the search for a novel, NPC1-specific biomarker (or set of biomarkers) is a topic of much interest. Here we employed high-resolution 1H nuclear magnetic resonance spectroscopy coupled with advanced multivariate analysis techniques in order to explore and seek differences between blood plasma samples acquired from NPC1 (untreated and miglustat treated), heterozygote, and healthy control subjects. Using this approach, we were able to identify NPC1 disease with 91% accuracy confirming that there are significant differences in the NMR plasma metabolic profiles of NPC1 patients when compared to healthy controls. The discrimination between NPC1 (both miglustat treated and untreated) and healthy controls was dominated by lipoprotein triacylglycerol 1H NMR resonances and isoleucine. Heterozygote plasma samples displayed also increases in the intensities of selected lipoprotein triacylglycerol 1H NMR signals over those of healthy controls. The metabolites identified could represent useful biomarkers in the future and provide valuable insight in to the underlying pathology of NPC1 disease

    Defective iron homeostasis and hematological abnormalities in Niemann-Pick disease type C1 [version 2; peer review: 2 approved]

    No full text
    Background: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium. The lysosomal system regulates key aspects of iron homeostasis, which prompted us to investigate whether there are hematological abnormalities and iron metabolism defects in NPC1. Methods: Iron-related hematological parameters, systemic and tissue metal ion and relevant hormonal and proteins levels, expression of specific pro-inflammatory mediators and erythrophagocytosis were evaluated in an authentic mouse model and in a large cohort of NPC patients. Results: Significant changes in mean corpuscular volume and corpuscular hemoglobin were detected in Npc1-/- mice from an early age. Hematocrit, red cell distribution width and hemoglobin changes were observed in late-stage disease animals. Systemic iron deficiency, increased circulating hepcidin, decreased ferritin and abnormal pro-inflammatory cytokine levels were also found. Furthermore, there is evidence of defective erythrophagocytosis in Npc1-/- mice and in an in vitro NPC1 cellular model. Comparable hematological changes, including low normal serum iron and transferrin saturation and low cerebrospinal fluid ferritin were confirmed in NPC1 patients. Conclusions: These data suggest loss of iron homeostasis and hematological abnormalities in NPC1 may contribute to the pathophysiology of this disease

    Molecular and expression analysis.

    No full text
    <p>(A) Chromatogram showing intronic mutation (c.285-10A>G) in genomic level (upper panel) and cDNA level (middle panel) of the patient. Lower panel shows normal cDNA sequence from control for comparison with patient. (B) Relative quantification of mRNA expression (three different isoforms) in patient derived dermal fibroblasts, compared to control. Error bar represents standard deviation from triplicates (*: p<0.05, **: p<0.01). (C) Western blotting results showing the expression of HPS5 in patients compared to control. Two different controls (Control-1 and Control-2), two additional patients with HPS5 (HPS5-1 and HPS5-2), and our proband were included. The level of protein expression was normalized with β-actin.</p
    corecore