49 research outputs found
The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture
Background World demand for agricultural products is increasing. New insights are required in order to achieve sufficient and sustainable yields to meet global food request. Chemical fertilizers have been studied for almost 200 years, and it is unlikely that they could be improved. However, to produce food for a growing world population, various methods to increase the efficiency of chemical fertilizers are investigated. One approach to increasing crop productivity is the development of environment-friendly organic products named biostimulants which stimulate plant growth by enhancing the efficiency of chemical fertilizers. Most studies have tested these products in short-term experiments, but little information is available on their effect on plants at the maturity stage of growth. On this account, this paper focuses on the effects of two biostimulants, red grape skin extract (RG) and alfalfa hydrolyzate (AH), throughout the entire plant development
Lipopeptides as anti-infectives: a practical perspective
AbstractLipopeptide antibiotics represent an old class of antibiotics that were discovered over 50 years ago, which includes the old polymyxins but also new entries, such as the recently approved daptomycin. They generally consist of a hydrophilic cyclic peptide portion attached to a fatty acid chain which facilitates insertion into the lipid bilayer of bacterial membranes. This review presents an overview of this class of antibiotics, focusing on their therapeutic applications and putting particular emphasis on chemical modifications introduced to improve their activity
The Impact of COVID-19 on Horticulture: Critical Issues and Opportunities Derived from an Unexpected Occurrence
The COVID-19 pandemic is causing many victims worldwide and has generated a serious economic crisis. Substantial changes have occurred in the food and ornamental production chains. The aim of the present review has been to summarize some of the main effects that the pandemic is having on horticulture and on the new habits of people. Infections and quarantine measures have prevented the regular flow of certain goods and of connected services. Cases of shortages and/or surpluses, a lack of the availability of labor, and a reduction in demand for some food products and flowers have occurred. New food production approaches have emerged and a reconnection between farmers and consumers has been spreading, thereby facilitating product distribution. Moreover, during the forced isolation, people have had to face periods of stress. The benefits that can be derived from leisure activities related to flowers and ornamental plants, and from access to nature and urban green spaces are increasingly being recognized as relevant. The seriousness of the pandemic will inevitably lead to lasting changes. Therefore, the vulnerability of the pre-COVID-19 distribution chains should be considered and a new food production chain should be drawn up, to increase the resilience of such systems
Frequent use of IGHV3-30-3 in SARS-CoV-2 neutralizing antibody responses
The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spike-specific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody
K121Q polymorphism in the Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 gene is associated with acute kidney rejection
The identification of risk factors for acute rejection (AR) may lead to strategies to improve success of kidney transplantation. Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides into nucleosides, modulating the purinergic signaling. Some members of the Ectonucleotidase family have been linked to transplant rejection processes. However, the association of Ectonucleotide Pyrophosphatase / Phosphodiesterase 1 (ENPP1) with AR has not yet been evaluated. The aim of this study was to evaluate the association between the K121Q polymorphism of ENPP1 gene and AR in kidney transplant patients. We analyzed 449 subjects without AR and 98 with AR from a retrospective cohort of kidney transplant patients from Southern Brazil. K121Q polymorphism was genotyped using allelic discrimination-real-time PCR. Cox regression analysis was used to evaluate freedom of AR in kidney transplant patients according to genotypes. Q allele frequency was 17.6% in recipients without AR and 21.9% in those with AR (P = 0.209). Genotype frequencies of the K121Q polymorphism were in Hardy-Weinberg equilibrium in non-AR patients (P = 0.70). The Q/Q genotype (recessive model) was associated with AR (HR = 2.83, 95% CI 1.08â7.45; P = 0.034) after adjusting for confounders factors. Our findings suggest a novel association between the ENPP1 121Q/Q genotype and AR in kidney transplant recipients
Effect of an intensive nutrition intervention of a high protein and low glycemic-index diet on weight of kidney transplant recipients : study protocol for a randomized clinical trial
Background: Excessive weight gain is commonly observed within the first year after kidney transplantation and is associated with negative outcomes, such as graft loss and cardiovascular events. The purpose of this study is to evaluate the effect of a high protein and low glycemic-index diet on preventing weight gain after kidney transplantation. Methods: We designed a prospective, single-center, open-label, randomized controlled study to compare the efficacy of a high protein (1.3â1.4 g/kg/day) and low-glycemic index diet versus a conventional diet (0.8â1.0 g/kg/day of protein) on preventing weight gain after kidney transplantation. A total of 120 eligible patients 2 months after transplantation will be recruited. Patients with an estimated glomerular filtration rate through the modification of diet of renal disease (MDRD) formula 300 mg/24 h will be excluded. Patientsâ diets will be allocated through simple sequential randomization. Patients will be followed-up for 12 months with nine clinic appointments with a dietitian and the evaluations will include nutritional assessment (anthropometrics, body composition, and resting metabolic rate) and laboratory tests. The primary outcome is weight maintenance or body weight gain under 5% after 12 months. Secondary outcomes include body composition, resting metabolic rate, satiety sensation, kidney function, and other metabolic parameters Discussion: Diets with higher protein content and lower glycemic index may lead to weight loss because of higher satiety sensation. However, there is a concern about the association of high protein intake and kidney damage. Nevertheless, there is little evidence on the impact of high protein intake on long-term kidney function outcome. Therefore, we designed a study to test if a high protein diet with low-glycemic index will be an effective and safe nutritional intervention to prevent weight gain in kidney transplant patients
Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies
The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69â20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69â20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies
Frequent use of IGHV3-30-3 in SARS-CoV-2 neutralizing antibody responses
The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spike-specific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody