59 research outputs found

    Radical-SAM dependent nucleotide dehydratase (SAND), rectification of the names of an ancient iron-sulfur enzyme using NC-IUBMB recommendations

    Get PDF
    In 1789, the influential French chemist Antoine-Laurent Lavoisier described his view of science and its langague in his book Traité élémentaire de chimie. According to the Robert Kerr’s translation it states (Lavoisier, 1790): “As ideas are preserved and communicated by means of words, it necessarily follows that we cannot improve the language of any science without at the same time improving the science itself; neither can we, on the other hand, improve a science without improving the language or nomenclature which belongs to it.” This view reminds us of Confucius’s earlier doctrine, the rectification of names (Steinkraus, 1980; Lau, 2000). Confucius believed that rectification of names is imperative. He explained (Steinkraus, 1980; Lau, 2000): “If language is incorrect, then what is said does not concord with what was meant, what is to be done cannot be affected. If what is to be done cannot be affected, then rites and music will not flourish. If rites and music do not flourish, then mutilations and lesser punishments will go astray. And if mutilations and lesser punishments go astray, then the people have nowhere to put hand or foot. Therefore the gentleman uses only such language as is proper for speech, and only speaks of what it would be proper to carry into effect. The gentleman in what he says leaves nothing to mere chance.” Inspired by these views, we make the analogy that the progress of science and the language used to describe it are two entangled electrons. This entanglement highlights the importance of introducing systemic names for enzymes using EC classification and the ever-growing problem of protein names (McDonald and Tipton, 2021). Here, we tackle one specific case of iron-sulfur ([FeS]) enzymes. We show that the language used to describe a conserved [FeS] enzyme of the innate immune system, i.e., viperin or RSAD2, is now inadequate and disentangled from its science. We discuss that the enzyme has cellular functions beyond its antiviral activity and that eukaryotic and prokaryotic enzymes catalyse the same chemical reactions. To prevent bias towards antiviral activity while studying various biochemical activities of the enzyme and using scientifically incorrect terms like “prokaryotic viperins,” we rectify the language describing the enzyme. Based on NC-IUBMB recommendations, we introduce the nomenclature S-adenosylmethionine (SAM) dependent Nucleotide Dehydratase (SAND)

    Structure–function relationships of radical SAM enzymes

    No full text
    International audienceRadical S-adenosyl-l-methionine (SAM) enzymes belong to a family of catalysts whose number of annotated sequences is still growing. Upon the one-electron reduction of a [Fe4S4] cluster, they can cleave SAM to produce a highly reactive 5′-deoxyadenosyl radical species. This radical species in turn triggers a wide variety of radical-based reactions on substrates ranging from small organic molecules to proteins, DNA or RNA. The challenging reactions they catalyse makes them very promising catalysts for diverse biotechnological applications. However, the high-energy intermediates involved require fine control of the chemistry by the protein matrix. Understanding their control mechanism is a prerequisite for a broader use of these enzymes as synthetic tools. Here I review some of the latest developments in the field, focusing on the structure–function relationship of a few examples for which three-dimensional structures, in vitro and spectroscopic data, as well as theoretical calculations, are available to better describe the close interaction between the chemistry performed and the tight control of the protein matrix

    How [Fe]-hydrogenase metabolizes dihydrogen

    No full text
    International audienceHydrogenases are very powerful biocatalysts for dihydrogen cleavage. Now, X-ray crystallography shows how [Fe]-hydrogenase requires ligand exchanges at the metal centre and significant molecular motions to open and close its active site to effectively transfer a hydride to an electrophilic organic substrate

    AdoMet radical proteins—from structure to evolution—alignment of divergent protein sequences reveals strong secondary structure element conservation

    No full text
    Eighteen subclasses of S-adenosyl-l-methionine (AdoMet) radical proteins have been aligned in the first bioinformatics study of the AdoMet radical superfamily to utilize crystallographic information. The recently resolved X-ray structure of biotin synthase (BioB) was used to guide the multiple sequence alignment, and the recently resolved X-ray structure of coproporphyrinogen III oxidase (HemN) was used as the control. Despite the low 9% sequence identity between BioB and HemN, the multiple sequence alignment correctly predicted all but one of the core helices in HemN, and correctly predicted the residues in the enzyme active site. This alignment further suggests that the AdoMet radical proteins may have evolved from half-barrel structures (αβ)(4) to three-quarter-barrel structures (αβ)(6) to full-barrel structures (αβ)(8). It predicts that anaerobic ribonucleotide reductase (RNR) activase, an ancient enzyme that, it has been suggested, serves as a link between the RNA and DNA worlds, will have a half-barrel structure, whereas the three-quarter barrel, exemplified by HemN, will be the most common architecture for AdoMet radical enzymes, and fewer members of the superfamily will join BioB in using a complete (αβ)(8) TIM-barrel fold to perform radical chemistry. These differences in barrel architecture also explain how AdoMet radical enzymes can act on substrates that range in size from 10 atoms to 608 residue proteins

    Structure and Catalytic Mechanism of Radical SAM Methylases

    No full text
    International audienceMethyl transfer is essential in myriad biological pathways found across all domains of life. Unlike conventional methyltransferases that catalyze this reaction through nucleophilic substitution, many members of the radical S-adenosyl-L-methionine (SAM) enzyme superfamily use radical-based chemistry to methylate unreactive carbon centers. These radical SAM methylases reductively cleave SAM to generate a highly reactive 5′-deoxyadenosyl radical, which initiates a broad range of transformations. Recently, crystal structures of several radical SAM methylases have been determined, shedding light on the unprecedented catalytic mechanisms used by these enzymes to overcome the substantial activation energy barrier of weakly nucleophilic substrates. Here, we review some of the discoveries on this topic over the last decade, focusing on enzymes for which three-dimensional structures are available to identify the key players in the mechanisms, highlighting the dual function of SAM as a methyl donor and a 5’-deoxyadenosyl radical or deprotonating base source. We also describe the role of the protein matrix in orchestrating the reaction through different strategies to catalyze such challenging methylations

    Radical SAM Enzymes and Metallocofactor Assembly: A Structural Point of View

    No full text
    International audienceThis Review focuses on the structure–function relationship of radical S-adenosyl-l-methionine (SAM) enzymes involved in the assembly of metallocofactors corresponding to the active sites of [FeFe]-hydrogenase and nitrogenase [MoFe]-protein. It does not claim to correspond to an extensive review on the assembly machineries of these enzyme active sites, for which many good reviews are already available, but instead deals with the contribution of structural data to the understanding of their chemical mechanism (Buren et al. Chem. Rev. 2020, 142 (25) 11006−11012; Britt et al. Chem. Sci. 2020, 11 (38), 10313–10323). Hence, we will present the history and current knowledge about the radical SAM maturases HydE, HydG, and NifB as well as what, in our opinion, should be done in the near future to overcome the existing barriers in our understanding of this fascinating chemistry that intertwine organic radicals and organometallic complexes

    Methods to Screen for Radical SAM Enzyme Crystallization Conditions

    No full text
    International audienceRadical S-adenosyl-L-methionine proteins most probably belong to the widest superfamily of metalloenzymes. Thanks to their ability to catalyze difficult reactions, combined with their involvement in the biosynthesis of numbers of natural products, they sound promising for various biotechnological applications. Their structural study is often limited because they are usually challenging to crystallize. This chapter presents protocols and equipment developed to quickly screen for crystallization conditions under anaerobic conditions, as exemplified by our recent study of the nitrogenase maturase NifB

    Maturation of [FeFe]-hydrogenases: Structures and mechanisms

    No full text
    International audienceMaturation of [FeFe]-hydrogenases, consisting in the synthesis and assembly of a di-iron center with a dithiolate bridging ligand as well as CO and CN ligands, depends on the concerted action of three metalloproteins, HydE, HydF and HydG. HydE and HydG are “Radical-SAM” enzymes involved in the synthesis of the ligands. HydF is proposed to function as a scaffold protein in which the di-iron center is assembled before being transferred to the hydrogenase. Here we review the current knowledge regarding the structure of the three maturases and the mechanisms of synthesis and assembly of the di-iron center of [FeFe]-hydrogenases

    IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly.

    No full text
    International audienceIron sulfur ([Fe-S]) clusters are essential prosthetic groups involved in fundamental cell processes such as gene expression regulation, electron transfer and Lewis acid base chemistry. Central components of their biogenesis are pyridoxal-5'-phosphate (PLP) dependent l-cysteine desulfurases, which provide the necessary S atoms for [Fe-S] cluster assembly. The archaeon Archaeoglobus fulgidus (Af) has two ORFs, which although annotated as l-cysteine desulfurases of the ISC type (IscS), lack the essential Lys residue (K199 in Af) that forms a Schiff base with PLP. We have previously determined the structure of an Af(IscU-D35A-IscS)2 complex heterologously expressed in Escherichia coli and found it to contain a [Fe2S2] cluster. In order to understand the origin of sulfide in that structure we have performed a series of functional tests using wild type and mutated forms of AfIscS. In addition, we have determined the crystal structure of an AfIscS-D199K mutant. From these studies we conclude that: i) AfIscS has no desulfurase activity; ii) in our in vitro [Fe2S2] cluster assembly experiments, sulfide ions are non-enzymatically generated by a mixture of iron, l-cysteine and PLP and iii) the physiological role of AfIscS may be to provide a cysteine ligand to the nascent cluster as observed in the [Fe2S2]-Af(IscU-D35A-IscS)2 complex. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases
    corecore