9 research outputs found

    Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences

    Get PDF
    Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence dat

    Evolutionary dynamics of the LTR retrotransposons roo and rooA inferred from twelve complete Drosophila genomes

    Get PDF
    BACKGROUND: Roo is the most abundant retrotransposon in the fruit fly Drosophila melanogaster. Its evolutionary origins and dynamics are thus of special interest for understanding the evolutionary history of Drosophila genome organization. We here study the phylogenetic distribution and evolution of roo, and its highly diverged relative rooA in 12 completely sequenced genomes of the genus Drosophila. RESULTS: We identify a total of 164 roo copies, 57 of which were previously unidentified copies that occur in 9 of the 12 genomes. Additionally we find 66 rooA copies in four genomes and remnants of this element in two additional genomes. We further increased the number of elements by searching for individual roo/rooA sequence domains. Most of our roo and rooA elements have been recently inserted. Most elements within a genome are highly similar. A comparison of the phylogenetic tree of our roo and rooA elements shows that the split between roo and rooA took place early in Drosophila evolution. Furthermore there is one incongruency between the species tree and the phylogenetic tree of the roo element. This incongruency regards the placement of elements from D. mojavensis, which are more closely related to D. melanogaster than elements from D. willistoni. CONCLUSION: Within genomes, the evolutionary dynamics of roo and rooA range from recent transpositional activity to slow decay and extinction. Among genomes, the balance of phylogenetic evidence, sequence divergence distribution, and the occurrence of solo-LTR elements suggests an origin of roo/rooA within the Drosophila clade. We discuss the possibility of a horizontal gene transfer of roo within this clade

    The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata

    Get PDF
    Background - Transposable elements (TEs) are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According to the recombinational spreading hypothesis, for instance, TEs can spread more easily in outcrossing species through recombination, and should thus be less abundant in selfing species. We here studied the distribution and evolutionary dynamics of TE families in the predominantly selfing plant Arabidopsis thaliana and its close outcrossing relative Arabidopsis lyrata on a genome-wide scale. We characterized differences in TE abundance between them and asked which, if any, existing hypotheses about TE abundances may explain these differences. Results - We identified 1,819 TE families representing all known classes of TEs in both species, and found three times more copies in the outcrossing A. lyrata than in the predominantly selfing A. thaliana, as well as ten times more TE families unique to A. lyrata. On average, elements in A. lyrata are younger than elements in A. thaliana. In particular, A. thaliana shows a marked decrease in element number that occurred during the most recent 10% of the time interval since A. thaliana split from A. lyrata. This most recent period in the evolution of A. thaliana started approximately 500,000 years ago, assuming a splitting time of 5 million years ago, and coincides with the time at which predominant selfing originated. Conclusions - Our results indicate that the mating system may be important for determining TE copy number, and that selfing species are likely to have fewer TEs

    BEL/Pao retrotransposons in metazoan genomes

    No full text
    Abstract Background Long terminal repeat (LTR) retrotransposons are a widespread kind of transposable element present in eukaryotic genomes. They are a major factor in genome evolution due to their ability to create large scale mutations and genome rearrangements. Compared to other transposable elements, little attention has been paid to elements belonging to the metazoan BEL/Pao subclass of LTR retrotransposons. No comprehensive characterization of these elements is available so far. The aim of this study was to describe all BEL/Pao elements in a set of 62 sequenced metazoan genomes, and to analyze their phylogenetic relationship. Results We identified a total of 7,861 BEL/Pao elements in 53 of our 62 study genomes. We identified BEL/Pao elements in 20 genomes where such elements had not been found so far. Our analysis shows that BEL/Pao elements are the second-most abundant class of LTR retrotransposons in the genomes we study, more abundant than Ty1/Copia elements, and second only to Ty3/Gypsy elements. They occur in multiple phyla, including basal metazoan phyla, suggesting that BEL/Pao elements arose early in animal evolution. We confirm findings from previous studies that BEL/Pao elements do not occur in mammals. The elements we found can be grouped into more than 1725 families, 1623 of which are new, previously unknown families. These families fall into seven superfamilies, only five of which have been characterized so far. One new superfamily is a major subdivision of the Pao superfamily which we propose to call Dan, because it is restricted to the genome of the zebrafish Danio rerio. The other new superfamily comprises 83 elements and is restricted to lower aquatic eumetazoans. We propose to call this superfamily Flow. BEL/Pao elements do not show any signs of recent horizontal gene transfer between distantly related species. Conclusions In sum, our analysis identifies thousands of new BEL/Pao elements and provides new insights into their distribution, abundance, and evolution.</p

    DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage

    No full text
    Abstract Background Insertions and deletions of DNA segments (indels) are together with substitutions the major mutational processes that generate genetic variation. Here we focus on recent DNA insertions and deletions in protein coding regions of the human genome to investigate selective constraints on indels in protein evolution. Results Frequencies of inserted and deleted amino acids differ from background amino acid frequencies in the human proteome. Small amino acids are overrepresented, while hydrophobic, aliphatic and aromatic amino acids are strongly suppressed. Indels are found to be preferentially located in protein regions that do not form important structural domains. Amino acid insertion and deletion rates in genes associated with elementary biochemical reactions (e. g. catalytic activity, ligase activity, electron transport, or catabolic process) are lower compared to those in other genes and are therefore subject to stronger purifying selection. Conclusion Our analysis indicates that indels in human protein coding regions are subject to distinct levels of selective pressure with regard to their structural impact on the amino acid sequence, as well as to general properties of the genes they are located in. These findings confirm that many commonly accepted characteristics of selective constraints for substitutions are also valid for amino acid insertions and deletions.</p

    BEL/Pao retrotransposons in metazoan genomes

    Get PDF
    Background Long terminal repeat (LTR) retrotransposons are a widespread kind of transposable element present in eukaryotic genomes. They are a major factor in genome evolution due to their ability to create large scale mutations and genome rearrangements. Compared to other transposable elements, little attention has been paid to elements belonging to the metazoan BEL/Pao subclass of LTR retrotransposons. No comprehensive characterization of these elements is available so far. The aim of this study was to describe all BEL/Pao elements in a set of 62 sequenced metazoan genomes, and to analyze their phylogenetic relationship. Results We identified a total of 7,861 BEL/Pao elements in 53 of our 62 study genomes. We identified BEL/Pao elements in 20 genomes where such elements had not been found so far. Our analysis shows that BEL/Pao elements are the second-most abundant class of LTR retrotransposons in the genomes we study, more abundant than Ty1/Copia elements, and second only to Ty3/Gypsy elements. They occur in multiple phyla, including basal metazoan phyla, suggesting that BEL/Pao elements arose early in animal evolution. We confirm findings from previous studies that BEL/Pao elements do not occur in mammals. The elements we found can be grouped into more than 1725 families, 1623 of which are new, previously unknown families. These families fall into seven superfamilies, only five of which have been characterized so far. One new superfamily is a major subdivision of the Pao superfamily which we propose to call Dan, because it is restricted to the genome of the zebrafish Danio rerio. The other new superfamily comprises 83 elements and is restricted to lower aquatic eumetazoans. We propose to call this superfamily Flow. BEL/Pao elements do not show any signs of recent horizontal gene transfer between distantly related species. Conclusions In sum, our analysis identifies thousands of new BEL/Pao elements and provides new insights into their distribution, abundance, and evolution

    Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences

    Full text link
    Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data
    corecore