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Abstract Horizontal gene transfer in prokaryotes is ram-
pant on short and intermediate evolutionary time scales. It
poses a fundamental problem to our ability to reconstruct
the evolutionary tree of life. Is it also frequent over long
evolutionary distances? To address this question, we ana-
lyzed the evolution of 2,091 insertion sequences from all 20
major families in 438 completely sequenced prokaryotic
genomes. Specifically, we mapped insertion sequence
occurrence on a 16S rDNA tree of the genomes we ana-
lyzed, and we also constructed phylogenetic trees of the
insertion sequence transposase coding sequences. We
found only 30 cases of likely horizontal transfer among dis-
tantly related prokaryotic clades. Most of these horizontal
transfer events are ancient. Only seven events are recent.
Almost all of these transfer events occur between pairs of
human pathogens or commensals. If true also for other,
non-mobile DNA, the rarity of distant horizontal transfer
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increases the odds of reliable phylogenetic inference from
sequence data.
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Introduction

In this paper, we provide evidence that successful horizon-
tal transfer over large phylogenetic distances may be rare
among prokaryotic insertion sequences, an important class
of transposable elements. Transposable elements are impor-
tant components of many bacterial genomes (Mahillon and
Chandler 1998; Craig et al. 2002; Siguier et al. 2006a). To
understand their evolutionary dynamics is important for
two unrelated reasons. The first comes from the observation
that transposable elements may have a net deleterious effect
on their host, despite their ability to occasionally cause ben-
eficial mutations (Doolittle and Sapienza 1980; Orgel and
Crick 1980; Hartl et al. 1983; Lawrence et al. 1992; Blot
1994; Charlesworth et al. 1994; Zeyl et al. 1996; Treves
et al. 1998; Capy et al. 2000; Cooper et al. 2001; Edwards
and Brookfield 2003; Schneider and Lenski 2004; Wagner
2006). Their continued sustenance in prokaryotic popula-
tions and metapopulations may thus depend on horizontal
gene transfer (Lawrence et al. 1992; Ochman et al. 2000;
Wagner 2006), which is analogous to infection in the epide-
miology of infectious diseases: A human disease agent may
cause mortality of individuals, but may persist in a popula-
tion through horizontal transfer from infected hosts. The
incidence of such horizontal transfer determines the evolu-
tionary fate of disease agents (Anderson and May 1991),
and the same may hold for families of transposable
elements. However, we know little about this incidence,
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especially among distantly related species, even though a
rich literature exists on the evolution of transposable ele-
ments (Sawyer and Hartl 1986; Ajioka and Hartl 1989;
Charlesworth and Langley 1989; Vonsternberg et al. 1992;
Wilke and Adams 1992; Blot 1994; Maside et al. 2000;
Bartolome et al. 2002; Vieira et al. 2002; Edwards and
Brookfield 2003; Fingerman et al. 2003; Petrov et al. 2003;
Witherspoon and Robertson 2003; Pasyukova et al. 2004;
Vieira and Biemont 2004; Arkhipova 2005; Garfinkel
2005; Maside etal. 2005; Sanchez-Gracia etal. 2005;
Wagner 2006; Touchon and Rocha 2007).

An unrelated reason to study the evolutionary dynamics of
transposable elements is that it may shed light on the evolu-
tion of prokaryotes themselves. Pervasive horizontal gene
transfer is the major challenge in reconstructing prokaryotic
phylogenies from gene trees (Doolittle 1999; Lake et al.
1999; Snel et al. 1999; Gogarten et al. 2002; Lawrence and
Ochman 2002; Brown 2003; Daubin et al. 2003; Philippe and
Douady 2003; Daubin and Ochman 2004; Delsuc et al. 2005;
Kurland 2005; Lerat et al. 2005; Ochman et al. 2005). The
magnitude of this problem varies with the extent to which
horizontal gene transfer occurs among distantly related spe-
cies. If horizontal gene transfer were largely restricted to
closely related species, then species trees would be ill-
resolved on small time scales, but well-resolved on large time
scales. Broad-scale prokaryotic phylogenies would not be in
danger. If horizontal gene transfer, however, were also abun-
dant among distantly related species, then prokaryotic phylo-
genetic relationships might be ill-resolved on all time scales.

While only a few studies focus on the incidence of hori-
zontal gene transfer for transposable elements, considerable
effort has been devoted to the genome-wide incidence of
horizontal transfer (involving mobile and other kinds of
DNA) (Lawrence et al. 1992; Nelson et al. 1999; Ochman
et al. 2000; Nakamura et al. 2004; Choi and Kim 2007).
Taken together, existing work suggests that horizontal gene
transfer is frequent on short and intermediate evolutionary
time scales (Lawrence etal. 1992; Ochman et al. 2000;
Nakamura et al. 2004), but that transfer may be rarer among
more distantly related species (Brugger etal. 2002; Ge
et al. 2005; Choi and Kim 2007).

Most existing studies on horizontal transfer focus on
genes whose products play important roles in an organism’s
life cycle. Because transposable elements are often not
essential per se, and because they can easily migrate
between different DNA molecules, such as chromosomes,
plasmids, and viral genomes, they are more easily trans-
ferred than other, non-mobile DNA. Insertion sequences
are among the simplest kinds of mobile DNA. If their inci-
dence of transfer is representative of that of other kinds of
mobile DNA, then a systematic survey of this incidence
may provide a “worst-case-scenario” of the overall extent
of horizontal transfer.
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Many analyses of single insertion sequences in individ-
ual genomes exist, but large surveys of many IS families in
multiple completely sequenced genomes are scarce. In a
previous paper (Wagner et al. 2007), we introduced the
computational tool IScan that can scan multiple genomes
for insertion sequences and other transposable elements.
IScan can identify not only the coding regions of these
insertion sequences, but also associated DNA such as direct
or indirect repeats. In this earlier work, we used a large data
set produced by IScan to demonstrate that the within-
genome sequence divergence of insertion sequences in a
given family is generally low, which provides evidence that
insertion sequences may generally not reside long in the
genomes that they have infected (Wagner 2006). An unre-
lated analysis, based on an independently generated large-
scale data set (Touchon and Rocha 2007), focused on the
question what determines IS abundance in a genome. It
concluded that genome size is the only significant predictor
of insertion sequence abundance.

The data set generated by IScan for our earlier analysis
(Wagner et al. 2007) is large and comprises 2,091 insertion
sequences (ISs) from all major 20 IS families, and their
abundance in more than 400 completely sequenced bacte-
rial genomes. We here use this data in a phlylogenetic anal-
ysis of insertion sequence evolution. The results show that
horizontal transfer of insertion sequences among distantly
related prokaryotic species is rare. Most distant transfer
events are very old, underscoring their rarity.

Methods

The departure point of our analysis was a data set produced
by our previously published tool IScan (Wagner etal.
2007). Briefly, this data resulted from a search for ISs
(Wagner et al. 2007) that represent the 20 major IS families
listed in Table 1 (Mahillon and Chandler 1998; Siguier
et al. 2006a; Toleman et al. 2006). We had carried out this
search in 438 curated prokaryotic genomes (consisting of
790 sequenced DNA molecules) available from GenBank
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/). The curated
query ISs are listed in column 2 of Table 1, and had been
obtained from the IS repository IS Finder (http://www-
is.biotoul.fr; Siguier et al. 2006b). We retained BLAST hits
to IS ORFs with an E value of <1 and at least 35% amino
acid identity to the query sequence. Our approach identified
a total of 2,091 insertion sequences (Table 1). Establishing
the completeness of IScan’s results is difficult, because no
gold standard of a set of genomes with a bona fide set of
sequences that constitute insertion sequences is known, and
because most recently sequenced genomes are automati-
cally annotated, and can thus not be used as a reference.
However, a comparison of IScan’s results with the annota-


ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
http://www-is.biotoul.fr
http://www-is.biotoul.fr

Mol Genet Genomics (2008) 280:397-408

399

Table 1 Reference IS and numbers of insertion sequences for each IS
family studied here

Family Reference IS Number Distinct
of ISs bacterial clades
IS1 IS1A 863 8
15481 1S481 259 3
IS3 1S2 242 2
IS5 IS5 239 11
1S4 1S4 171 3
1S110 1S110 88 4
15982 15982 57 1
1S630 1S630 55 4
1S256 1S256 29 2
1S21 IS21 25 1
1591 1891 19 1
Tn3 1S1071 18 2
1S30 1S30 13 1
ISL3 ISL3 7 1
IS66 ISRm14 3 ND
ISCR ISCR1 2 ND
IS6 IS15 1 ND
ISAs1 ISAs1 0 ND
1S1380 IS380A 0 ND
IS605 1S605 0 ND
Total 2,091 44

The data in the first three columns of this table are reproduced from
Table 1 in Wagner et al. (2007), and are shown here only for clarity.
Column 1 shows the IS families we studied, and column 2 shows the
particular IS within a family that was used as a query sequence for our
tool IScan. The query sequences can be found at the ISfinder database
(http://www-is.biotoul.fr; Siguier et al. 2006b). IS families shown in
black have sufficient members for a meaningful phylogenetic analysis

tion of the perhaps best-annotated genome, that of E. coli,
suggests that IScan’s result match known genomic IS con-
tent well. For instance, the curated genome sequence of E.
coli K-12 (file NC_000913.gbk, available from ftp:/
ftp.ncbi.nlm.nih.gov/genomes/Bacteria/) contains 7, 4, and
1 non-truncated copies of the insertion sequences IS1, IS30,
and IS4, respectively. IScan detects all these copies, in the
right position, and it detects no additional copies. We note
that the original genome sequencing paper (Blattner et al.
1997) for E. coli K-12 reported only 3, 3, and O copies for
the insertion sequences IS1, IS30, and IS4. This suggests
that even the presumably high-quality manual annotation of
the earliest sequenced genomes is subject to error, suggest-
ing that it will be difficult to establish an annotation gold
standard for transposable elements.

A few bacterial species have multiple chromosomes, not
all of which contain 16S rDNA. Because one of our main
goals was to study the distribution of ISs on the bacterial

16S rDNA tree, we excluded ISs on molecules that did not
contain 16S rDNA from further analysis.

For generation of the 16S rDNA phylogenetic tree, pro-
karyotic 16S rDNA sequences were extracted from gen-
bank files (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/) of
bacterial genomes and aligned with the GreenGenes NAST
alignment program at http://greengenes.lbl.gov. A prokary-
otic 16S rDNA maximum-likelihood tree was constructed
using the package phyml (Guindon and Gascuel 2003b),
with the Hasegawa—Kishino—Yano (Hasegawa et al. 1985)
substitution model, where the transition—transversion ratio
and the proportion of variable sites were estimated from the
data. To accommodate variable substitution rates among
sites, we allowed for four different substitution rates and
estimated the parameter of the gamma distribution deter-
mining the rate variation from the data. A tree generated by
neighbor joining (Higgs and Attwood 2005) was used as
the starting tree to be refined by the maximum likelihood
algorithm. The major features of the resulting tree are con-
cordant with other recently published trees using different
approaches, such as that by (Ciccarelli et al. 2006).

For those ISs where more than three copies existed in the
hundreds of genomes we studied, we also generated phylo-
genetic trees of individual IS families, both within a given
genome, as well as for all family members, regardless of
genome provenance. Because some of the IS families that
we studied had more than one open reading frame (ORF),
we first merged these ORFs for reasons of computational
tractability, as described below. In each set of insertion
sequences for which a phylogenetic tree was to be con-
structed, we then identified subsets of ISs whose coding
region was identical within a genome, and used only one
representative of each such subset for further analysis. We
then aligned the coding sequence of the ISs using clustalw
(Thompson et al. 1994), and constructed a maximum-likeli-
hood phylogenetic tree from the resulting alignment using
phyml with the same parameters as listed above.

For some of our analyses, it was necessary to estimate
synonymous divergence K, among IS coding regions. We
prefer to use K, rather than raw DNA sequence divergence,
because synonymous changes are under weak selection,
accumulate rapidly, and are thus more sensitive to detect
recent horizontal transfer. We note that for low divergence
(e.g., K, <0.2), K, estimates sequence divergence well. For
example, a value of K =0.1 implies that two sequences
differ approximately at 10% of their synonymous sites. To
estimate K, we first merged ORFs for ISs whose coding
region contains more than two ORFs. Specifically, we cal-
culated the number of nucleotides that overlap in the two
ORFs, and eliminated from a sequence containing both
ORFs the segment containing the overlap, and any addi-
tional nucleotides upstream or downstream of the overlap-
ping segment required to retain the reading frames of the
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two ORFs. On average, IS ORFs were shortened by only
four nucleotides through this procedure. We then used our
previously published tool GenomeHistory (Conant and
Wagner 2002) to estimate K.

Results

Only few distant transfers are required to explain the global
distribution of ISs

To study the phylogenetic distribution of insertion
sequences, we first identified 438 curated, completely
sequenced prokaryotic genomes, and constructed a maxi-
mum-likelihood phylogenetic tree of all 16S-rDNA-con-
taining molecules in this data set (“Methods”).

This tree serves as a scaffold to place IS relationships.
The use of 16S rDNA strikes a compromise between com-
putational feasibility and phylogenetic accuracy: The tree’s
major features are in good agreement with phylogenies
based on more sophisticated multi-locus sequence analysis
(Gevers et al. 2005), such as that by (Ciccarelli et al. 2006),
which are computationally very costly. We then identified
members of 20 different insertion sequence families
(Table 1) in the curated genomes, and mapped them onto
this phylogenetic tree. Figure | indicates the structure of
the 16S tree, as well as the distribution and abundance
(length of bars) for the ten most abundant IS families in the
data set (Table 1). Close examination shows that each IS
family has a patchy and sporadic distribution on the tree,
with modest concentrations of ISs found in only a small
number of species, such as the extremely closely related
Escherichia coli/Shigella clade (box in Fig. 1). Available
completely sequenced genomes are not an unbiased sample
from the prokaryotic world, because many sequencing pro-
jects have focused on human-associated species. This bias
in the data may partly account for the concentrations of ISs
in closely related species. Together, the ten most abundant
families shown in Fig. 1 encompass almost 97% of the
2,091 IS copies we identified. Six of the 20 families that we
had examined had fewer than three representatives
(Table 1). No meaningful phylogenetic analysis is possible
for such small numbers of ISs, and we thus did not study
these families further. We analyzed each of the remaining
14 families separately, and also constructed maximum-like-
lihood phylogenetic trees (Guindon and Gascuel 2003a) for
family members within a given genome.

Past horizontal gene transfer can reveal itself through
several possible signatures (de la Cruz and Davies 2000;
Koonin et al. 2001; Ragan 2001), including phylogenetic
signatures and DNA composition signatures. None of these
is without limitations. For our analysis, phylogenetic signa-
tures are better suited, because over time, the DNA compo-
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Fig. 1 The upper panel shows a maximum-likelihood phylogenetic P

tree of 16S rDNA in more than 400 completely sequenced prokaryotic
genomes, where the following major clades are indicated: Archaea
(Ar), actinobacteria (Act), cyanobacteria (Cy), firmicutes (Fir), a-, -,
and y-proteobacteria (a-, -, and y-, respectively). Lengths of colored
bars are proportional to IS numbers within a genome in the ten most
abundant IS families, as indicated by the color legend. Note the patchy
distribution of individual families. The rectangular box and the lower
(boxed) panel highlight the Escherichia colilShigella clade, which
contain the greatest numbers of ISs. Trees were displayed with ITOL
(Letunic and Bork 2007)

sition of horizontally transferred genes approaches that of
the host genome, which limits the time horizon for the
detection of transfer. There are two major phylogenetic sig-
natures (Figure S1 in Electronic supplementary material).
The first involves incongruences between gene trees (e.g.,
between 16S rDNA and IS trees). Unfortunately, biased
gene deletions from either tree, rapid expansion of gene
families, or taxonomic sampling artefacts can cause errone-
ous results with this signature. Preferable in our case is the
second phylogenetic signature: a patchy distribution of
genes in disjoint clades of a large phylogeny (Figure S1b).
In such a distribution, only a small fraction of genomes
contain a gene or IS of interest. These genomes occur in
small clades (patches) on a tree that are separated by deep
branches, and by many taxa that do not contain the IS. In
principle, such a patchy distribution could also be
explained by independent loss of an IS from all taxa that do
not contain it. However, with a phylogenetic tree of more
than 400 taxa spanning vast phylogenetic distances, and rel-
atively few taxa containing ISs, this explanation is exceed-
ingly unlikely. For example, the most abundant IS we study
(IS1) occurs in fewer than 5% (20/438) of completely
sequenced bacterial genomes. In addition, no known IS has
a broad phylogenetic distribution that would be required as
ancestral under the independent-loss scenario. We thus
attribute IS occurrence in clearly disjoint clades to horizon-
tal gene transfer.

Figure 2 shows examples of such anomalous distribu-
tions for three different ISs. For IS110 (Fig. 2a), there are
four IS-containing clades, Escherichia coli/Shigella (40
copies), Burkholderia spp. (24), Corynebacterium spp (5),
and Streptomyces coelicolor (5), requiring three horizontal
transfer events between these clades. IS5 (Fig. 2b) occurs in
eleven disjoint bacterial clades or species (Escherichia coli,
Vibrio vulnificus, Pseudomonas syringae, Marinobacter
aquaeolei, Methylococcus capsulatus, Burkholderia cepa-
cia, Ralstonia solanacearum, Acidovorax spp., Azoarcus
sp. EbNI1, Xanthomonas spp., Staphylococcus aureus),
requiring ten horizontal transfer events. We observe IS1, by
far the most prolific IS element (Table 1), in eight disjoint
clades (Fig. 2c), which are (counterclockwise beginning at
9 o’clock) the Shigella spp/Escherichia coli clade (>700
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Fig. 2 Incidence of a IS110, b IS5, and ¢ IS1 on the maximum-likeli-
hood phylogenetic tree of prokaryotic 16S rDNA from Fig. 1. Boxes
and inscribed names indicate genera in which ISs occur. Where space
permitted, the bars indicating IS numbers were included in the box, and

copies), Salmonella enterica (4 copies), Haemophilus duc-
reyi (1), Shewanella sp. W3-18-1 (1), Desulfotalea psychro-
phila (1), Streptococcus pyogenes (1), Lactobacillus sakei
(1), and Bacillus cereus (1). A minimum of seven horizon-
tal transfer events would be required to explain this phylo-
genetic distribution. In general, the majority of clades
among which distant transfers occur are associated with
humans. For example, among the eight IS1 clades, six are
associated with humans either as pathogens or commensals
(Albritton 1989; Kotiranta et al. 2000; Ryan and Ray 2004;
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indicated by arrows otherwise. Red arrows indicate likely directions of
recent horizontal gene transfer. Tree layout, symbols for major clades,
and color coding of ISs are as in Fig. 1. Trees are displayed with ITOL
(Letunic and Bork 2007)

Chaillou et al. 2005). The remaining two (D. psychrophila
and Shewanella sp. W3-18-1) are psychrophilic (cold-lov-
ing) marine bacteria. To preserve space, we do not show
16S trees for the remaining IS elements, but we list
(Table 1) the numbers of distinct clades containing these
elements. Among the 14 IS families with sufficient copy
numbers for a phylogenetic analysis, 9 families occurred in
more than one clade. To explain the phylogenetic distribu-
tion of ISs among these clades, merely 30 horizontal trans-
fer events would be necessary.
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Most of the few distant transfers are old

We next asked whether any of these likely horizontal trans-
fer events might have occurred recently. To this end, we
compared the sequence similarity of the 16S rDNA
sequences considered here with the divergence of insertion
sequences among genomes. Figure S2a shows the distribu-
tion of pairwise nucleotide divergence among the 16S
rDNA molecules considered here. Figure S2b shows the
distribution of synonymous divergence K, the fraction of
synonymous substitutions at synonymous sites (Li 1997),
for all pairs of ISs of the same family that occur in different
genomes. A signature of a recent horizontal transfer would
involve distantly related species (high 16S rDNA diver-
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Fig. 3 Association between 16S rDNA divergence (horizontal axis)
and synonymous divergence (K,) of IS pairs among genomes (vertical
axis) for IS families a IS110, b IS5, and ¢ IS1. The size of the circles
correspond to the number of IS pairs, as indicated in the inset, that oc-
cur in the genomes of the 16S divergence shown on the horizontal axis,
and that has the divergence shown on the vertical axis. In b, two data
points indicating very similar IS5 elements in highly diverged ge-
nomes are indicated by an arrow. A phylogenetic tree based on IS5
coding region divergence is shown for the three genomes in which

gence) with closely related ISs (low synonymous diver-
gence K). Such pairings are very rare. The typical pattern
of association observed for all IS families that we have
studied is exemplified by IS110 in Fig. 3a. The figure
shows that IS elements in highly diverged bacterial species
are also highly diverged. This means that no horizontal
transfers of IS110 involving distantly related species occu-
red recently. A similar pattern holds for 11 of the 14 fami-
lies of ISs that we have studied.

The three exceptions are 1S256 (phylogeny not shown),
IS5 (Figs. 2b, 3b), and IS1 (Figs. 2c, 3c). The case of IS256
is simple: only two distantly related clades (Enterococcus
faecalis V583 and Staphylococcus epidermidis; 16S diver-
gence ~0.1) harbor copies of IS256. All these copies are
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these IS elements occur. See text for details. In ¢, the most highly di-
verged group of taxa containing very similar IS1 elements is circled.
Solid lines are linear regression lines. Note the different range on the
vertical axis in ¢, due to the lower overall divergence of IS1 elements.
Highly divergent ISs in different genomes may reflect either the long
time that has elapsed between the most recent common ancestors of the
two genomes, or it may be caused by multiple ancient and highly di-
verged copies of the IS in one genome, some of which may also show
high divergence to ISs in the other genome
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identical to one another, suggesting a recent transfer. In IS5
there are two species-IS pairs with very divergent 16S
rDNA, yet highly similar IS5 sequences (indicated by an
arrow in Fig. 3b). These involve two strains of E. coli
(W3110 with 18 IS copies, and K12 with 11 IS copies) on
one hand, and Staphylococcus aureus (1 copy) on the other
hand. Only three numerically different values of K are
observed between the IS5 elements in these E. coli-S.
aureus species pairs, K, = 0, K= 0.007, and K, = 0.23. The
value K, = 0 indicates a very recent transfer. Can we infer
the direction of this transfer? If the E. coli copies were
derived from a very recent transfer (K = 0) from S. aureus
to E. coli, and if they thus had also expanded recently, then
we would expect all the IS5 copies in E. coli to have the
same divergence (K, = 0) to the single IS copy in S. aureus.
However, there are IS copies with greater values of
K,;=0.007 and K;=0.23 in E. coli, which cannot be
explained by this scenario. In contrast, a transfer from one
of the E. coli species to S. aureus is consistent with the
data. The phylogenetic tree shown in Fig. 3b shows the
phylogenetic relationship between the E. coli IS5 copies
and the single S. aureus copy. We can infer that this copy is
derived from one of the 16 identical IS5 copies in E. coli.
The red arrow in Fig. 2b reflects the direction of this trans-
fer.

The only other examples of recent horizontal transfers
among distantly related species are observed for IS1 (Tou-
chon and Rocha 2007; Wagner et al. 2007). Here, we see a
large cluster of species with highly similar ISs and diver-
gent 16S rDNAs (circled in Fig. 3c). Note that the large
number of data points in this cluster does not necessarily
imply multiple distant transfer events. It is caused by large
numbers of highly similar ISs in one clade of closely
related species. Specifically, all of the species pairs involve
a member of the E. coli/Shigella group (high IS copy num-
bers) on one hand, and the following species (low IS copy
numbers) on the other hand (counterclockwise in Fig. 2c
from the E. coli/Shigella clade): Haemophilus ducreyi (1
copy), Desulfotalea psychrophila (1), Streptococcus pyoge-
nes (1), Lactobacillus sakei (1), Bacillus cereus (1). The
single IS1 element of each of these species has at least one
identical (K =0) counterpart in the E.coli/Shigella clade
(and many other IS1 elements with greater divergence).
The five species are highly diverged (16S divergence
>0.18) from the E.coli/Shigella clade, and contain only a
single IS1 element. Because the E.coli/Shigella clade con-
tains multiple IS1 pairs with K > 0, we can infer, with the
same reasoning as above for IS5, that the transfer occurred
from the E.coli/Shigella clade to these other species, and
not vice versa. This pattern is plausible if one considers the
large number (>700) IS1 copies in this clade. We can, how-
ever, not completely exclude IS1 transfers between those
species that have only one IS1 element. In sum, we observe
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only seven recent horizontal gene transfer events (one for
each of IS256 and IS5, as well as five for IS1) among dis-
tantly related prokaryotic species. All but one (Desulfotalea
psychrophila) of these involve transfers between species
with well-known human associations.

Analysis of IS trees

Thus far, we have focused on the analysis of 16S rDNA-
based trees of prokaryotic species to identify the likely
cases of horizontal gene transfer. A second possibility is to
analyze the phylogenetic relationships of IS elements them-
selves. Two reasons, however, render the interpretation of
such trees difficult. The first is the often large number of ISs
within any given genome (see also below). The second is
the fact that most transfer events are ancient, meaning that
the clade from which they originated may not be unambigu-
ously identifiable. However, a few IS trees are informative.
The information they provide is consistent with analyses of
the 16S bacterial trees. A case in point is the IS5 tree. Here,
the recent transfer of IS5 from the E.coli/Shigella clade to
Staphylococcus aureus discussed earlier is clearly identifi-
able (Fig. 4a; red arrow), and two other likely ancient trans-
fer events can also be identified. They include a possible
transfer event between Methylococcus capsulatus and
Azoarcus sp. EbN1, as well as another event involving Aci-
dovorax sp. JS42 and the Xanthomonas clade (Fig. 4a; blue
arrows). Another example, involving very clear separation
of ancient clades, involves IS110. As discussed earlier
(Fig. 2a), IS110 occurs only in four well separated very dis-
tantly related clades and shows no evidence of recent trans-
fer. The IS110 tree itself (Fig. 4b) shows that ISs in the
clades Burkholderia and E.coli/Shigella group together,
suggesting that the more recent of two ancient transfer
events occurred between these clades.

Within clades of closely related taxa, the 16S rDNA
based phylogenetic approach fails for our data set. Part of
the reason is that 16S rDNA evolves slowly, and thus does
not resolve the phylogenies of closely related taxa well;
another part is the especially frequent horizontal transfer
among closely related genomes. Figure S3 illustrates two
examples of these problems, manifested in the low-boot-
strap support of phylogenetic trees for IS1 in the E.coli/Shi-
gella clade and for IS110 in a clade of closely related
Burkholderia species. This limitation means that our analy-
sis cannot answer some important questions about the evo-
lutionary dynamics of transposable elements. Examples
include whether IS copy numbers generally increase in a
clade over the time, or whether individual ISs get fre-
quently lost from genomes.

A final aspect of horizontal gene transfer regards the
question whether ISs in a family are often transferred into a
genome more than once. Although recent evidence (Tou-
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chon and Rocha 2007) suggests that such frequent transfer
is not likely to account for differences in IS numbers among
genomes, we should not exclude this possibility a priori,
especially because the phenomenon of transposition immu-
nity is not widespread among insertion sequences, with the
possible exception of Tn3 and IS21 (Mahillon and Chan-
dler 1998). Figure S4a shows, as an example, a hypotheti-
cal IS tree consistent with two independent transfer events.

In analyzing the data, we need to distinguish three possi-
ble scenarios. The first of them involves recent transfers
among closely related prokaryotic species. We here face an
often poorly-resolved phylogeny of ISs within genomes. A
case in point is the phylogeny of IS982, which occurs in
only two species. The phylogeny (Figure S4b) shows very
low-boostrap support along many branches. Fundamen-
tally, the reason for this problem is that ISs within a
genome are usually highly similar to one another, indicat-
ing their recent acquisition by the genome (Mahillon and
Chandler 1998). Figure S4c illustrates that this pattern
holds more generally. The figure shows the distribution of
K. the maximal within-genome synonymous diver-

S,max?*
gence K of IS copies (pooled for all families). K| .., is the

,max

Burkholderia spp. (8 genomes, 29 1Ss)

100

% E.col Shigella spp. (10 g
100 = -

100

synonymous divergence of the most highly diverged IS pair
within a given host genome and IS family. If synonymous
divergence of ISs accumulates at a clock-like rate, then this
maximal K can be used as an estimate of the time of most
recent common ancestry of ISs within a genome. The
median K ... of 0.0087 is very low for most genomes.
This indicates that most of the ISs entered their host
genome too recently to resolve multiple transfer events
with molecular evolution data. It also suggests that it may
be difficult to resolve recent horizontal transfer events
among closely related prokaryotes, even though such trans-
fer events may be abundant.

The second scenario involves recent transfers among
distantly related clades. As discussed above, there are only
seven such events and they involve either ISs that are all
identical (IS256), or transfer events into species that have
only one IS. Such transfer events are thus useless to iden-
tify multiple transfers into a genome. The third scenario
involves ancient IS transfers among distantly related clades.
Here, as discussed above, it is usually not only difficult to
trace individual transfer events, but the direction of transfer
events is unclear. Thus, even the great abundance of existing
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sequence data is insufficient to provide convincing exam-
ples of multiple IS transfer events into a genome.

Discussion

In sum, in our survey of 2,091 insertion sequences, with
representatives from all 20 major families in 438 com-
pletely sequenced prokaryotic genomes, we found only 30
cases of likely horizontal transfer among distantly related
prokaryotic clades. The vast majority (23 of 30) of these
horizontal transfer events are ancient. Only seven events
are recent. Almost all of these transfer events occur
between pairs of human pathogens or commensals. This
bias towards human-associated species is at least partly
explicable by a bias in the data set of available completely
sequenced genomes: Genome sequencing projects prefera-
bly focus on human-associated species, because of their
medical relevance. Our small numbers of distant horizontal
transfer events may even be overestimates, because ISs
from different families may sometimes be transferred at the
same time on the same vector, thus further reducing the
actual number of transfer events.

Previous studies that focus on genomic DNA in general,
and not just on transposable elements, indicate that hori-
zontal gene transfer is frequent on short and intermediate
evolutionary time scales (Lawrence et al. 1992; Ochman
et al. 2000; Nakamura et al. 2004). However, transfer, espe-
cially recent transfer, may be rarer among more distantly
related species (Brugger et al. 2002; Ge et al. 2005; Choi
and Kim 2007). With possible exceptions (Nelson et al.
1999), our observations are thus consistent with previous
work.

A variety of barriers for distant horizontal transfer of
genes are known (Thomas and Nielsen 2005; Sorek et al.
2007). Among them is high-gene expression. It is not
apriori a likely candidate for the sequences we study,
because ISs are generally lowly expressed and tightly regu-
lated (Nagy and Chandler 2004). However, this tight regula-
tion may depend on host factors. It is tempting to speculate
that distant transfer increases the likelihood of host death by
uncontrolled expression and proliferation of transposase
genes. Other possible barriers include incompatible restric-
tion—modification systems, or conjugative plasmids with
limited host range (Thomas and Nielsen 2005).

Even the enormous amounts of available sequence data
do not allow us to answer several questions about the evo-
lutionary dynamics of ISs. These include how often hori-
zontal transfer occurs between closely related species,
whether the number of IS copies in a clade shows a net
decrease or increase over time, whether ISs often get lost
from genomes, and whether genomes usually get “infected”
by an IS multiple times.

@ Springer

The reasons are threefold: first, phylogenetic trees of
closely related prokaryotes are often ill-resolved. This
problem might be remedied for some clades by more
sophisticated multi-locus approaches (Godoy et al. 2003),
but only at a computational cost too large for large-scale
surveys like this one. Second, IS phylogenies within given
species are often poorly resolved. Fundamentally, the rea-
son is that many ISs within a genome are highly similar
(Lawrence et al. 1992; Wagner 2006). If the median synon-
ymous divergence K for the two most diverged ISs within
a genome is less than 0.01 (Figure S4c), then each IS will
contain very few phylogenetically informative sites. Third,
and relatedly, different closely related genomes often con-
tain identical ISs (e.g., Fig. 3c). Their origin in a genome
through vertical or horizontal transfer is thus often unclear.
Some of these problems (for example ambiguous IS phy-
logenies) may not be solvable through a simple accumula-
tion of more data, but may represent fundamental
limitations of molecular evolution approaches. Other prob-
lems would disappear if we were able to analyze horizontal
gene transfer among many distantly related genomes. How-
ever, because distant transfer is so rare, we are not able to
do that.

We now turn to some limitations of our analysis. First,
computational constraints prevent us from analyzing trun-
cated and very short sequences, or sequences with very low
(and often dubious) sequence similarity to the reference
insertion sequence we used. Because most truncated ISs
would be inactive, and because passive proliferation of
inactive ISs through active copies is probably less prevalent
than for eukaryotic DNA transposons (Mahillon and Chan-
dler 1998), such elements may be less likely to transpose
between DNA molecules. If so, then their propensity to
become successfully transferred horizontally may be lower,
and their distant transfer even rarer, but our data do not
allow us to determine by how much. Second, because some
IS families consist of multiple extremely diverse sub-fami-
lies (Mahillon and Chandler 1998), and because we use
only one query sequence per family, our approach does not
yield an exhaustive enumeration of ISs in the genomes we
analyzed. Rather, it represents a statistical survey, sufficient
for our purpose, which ensures that the major families are
represented. Third, it would be highly instructive to study
the phylogenetic relationships of ISs on plasmids. Some of
the completely sequenced genomes have associated plas-
mids. However, only 5% of the ISs we identified occurred
on plasmids, and because these are distributed over multi-
ple families, their numbers in our data set are too small for
a meaningful phylogenetic analysis. However, combined
with data from dedicated plasmid sequencing efforts, such
an analysis may become possible. We leave it to a future
contribution. Finally, we have no knowledge of the envi-
ronmental conditions from which the prokaryotes whose
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genomes we analyzed have been sampled. These conditions
may affect transposition rates. For example, long-term stab
cultures of E.coli show increased transposition rates (Naas
et al. 1994).

The pervasiveness of horizontal gene transfer has led
some researchers to question our ability to resolve the
broad phylogeny of prokaryotes, with much ensuing debate
(Doolittle 1999; Lake et al. 1999; Snel et al. 1999; Gogar-
ten et al. 2002; Brown 2003; Philippe and Douady 2003;
Delsuc et al. 2005; Kurland 2005). In this regard, the rarity
of distant horizontal transfer we observe is reassuring, espe-
cially since it comes from a highly mobile class of
sequences. The ISs we study can be much more easily
transferred than many other, non-mobile genetic elements,
because they can autonomously change location from
chromosomes to transferable plasmids, and vice versa.
Embedded in composite transposons mediating antibiotic
resistance, or in pathogenicity islands allowing conversion
from a free-living to a pathogenic lifestyle, natural selection
can further facilitate their spreading. The rarity of distant
transfer for the many IS families and many genomes we
study suggests that distant transfer among most other genes
might be even rarer. Observations like these give reason to
hope that the broad evolutionary history of prokaryotes can
be reliably inferred from sequence data.
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