4,392 research outputs found

    Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology

    Full text link
    The shear-jamming of dense suspensions can be strongly affected by molecular-scale interactions between particles, e.g. by chemically controlling their propensity for hydrogen bonding. However, hydrogen bonding not only enhances interparticle friction, a critical parameter for shear jamming, but also introduces (reversible) adhesion, whose interplay with friction in shear-jamming systems has so far remained unclear. Here, we present atomic force microscopy studies to assess interparticle adhesion, its relationship to friction, and how these attributes are influenced by urea, a molecule that interferes with hydrogen bonding. We characterize the kinetics of this process with nuclear magnetic resonance, relating it to the time dependence of the macroscopic flow behavior with rheological measurements. We find that time-dependent urea sorption reduces friction and adhesion, causing a shift in the shear-jamming onset. These results extend our mechanistic understanding of chemical effects on the nature of shear jamming, promising new avenues for fundamental studies and applications alike

    Effect of the Coriolis Force on the Hydrodynamics of Colliding Wind Binaries

    Get PDF
    Using fully three-dimensional hydrodynamic simulations, we investigate the effect of the Coriolis force on the hydrodynamic and observable properties of colliding wind binary systems. To make the calculations tractable, we assume adiabatic, constant velocity winds. The neglect of radiative driving, gravitational deceleration, and cooling limit the application of our models to real systems. However, these assumptions allow us to isolate the effect of the Coriolis force, and by simplifying the calculations, allow us to use a higher resolution (up to 640^3) and to conduct a larger survey of parameter space. We study the dynamics of collidng winds with equal mass loss rates and velocities emanating from equal mass stars on circular orbits, with a range of values for the ratio of the wind to orbital velocity. We also study the dynamics of winds from stars on elliptical orbits and with unequal strength winds. Orbital motion of the stars sweeps the shocked wind gas into an Archimedean spiral, with asymmetric shock strengths and therefore unequal postshock temperatures and densities in the leading and trailing edges of the spiral. We observe the Kelvin-Helmholtz instability at the contact surface between the shocked winds in systems with orbital motion even when the winds are identical. The change in shock strengths caused by orbital motion increases the volume of X-ray emitting post-shock gas with T > 0.59 keV by 63% for a typical system as the ratio of wind velocity to orbital velocity decreases to V_w/V_o = 2.5. This causes increased free-free emission from systems with shorter orbital periods and an altered time-dependence of the wind attenuation. We comment on the importance of the effects of orbital motion on the observable properties of colliding wind binaries.Comment: 12 pages, 17 figures, accepted for publication in Ap

    Learning Focused Schools Strategies: The Level of Implementation and Perceived Impact on Student Achievement

    Get PDF
    Max Thompson’s Learning Focused Strategies approach to school improvement has been embraced by school leaders and teachers as an approach to redesign and reform public schools. The program developers claim schools with 90% minority students and 90% of students qualifying for free or reduced lunch programs can achieve at high levels on required curriculum. Examined are the beliefs and attitudes of teachers as related to the degree of implementation of Learning Focused Strategies in their classrooms. The study supported the premise that LFS are research based and effective, that teachers believe the strategies will improve instruction, high level of implementation, enhancing the potential for student success. The study examined the relationships between experience, grade level, degree level, and the self reported degree of implementation

    Electroweak Bremsstrahlung in Dark Matter Annihilation

    Full text link
    A conservative upper bound on the total dark matter (DM) annihilation rate can be obtained by constraining the appearance rate of the annihilation products which are hardest to detect. The production of neutrinos, via the process χχ→νˉν\chi \chi \to \bar\nu \nu , has thus been used to set a strong general bound on the dark matter annihilation rate. However, Standard Model radiative corrections to this process will inevitably produce photons which may be easier to detect. We present an explicit calculation of the branching ratios for the electroweak bremsstrahlung processes χχ→νˉνZ\chi \chi \to \bar\nu \nu Z and χχ→νˉeW\chi \chi \to \bar\nu e W. These modes inevitably lead to electromagnetic showers and further constraints on the DM annihilation cross-section. In addition to annihilation, our calculations are also applicable to the case of dark matter decay.Comment: 7 pages, 4 figures. New appendix with an extensive discussion of Majorana fermions and helicity suppression

    A Template Analysis of Intimate Partner Violence Survivors’ Experiences of Animal Maltreatment: Implications for Safety Planning and Intervention

    Get PDF
    This study explores the intersection of intimate partner violence (IPV) and animal cruelty in an ethnically diverse sample of 103 pet-owning IPV survivors recruited from community-based domestic violence programs. Template analysis revealed five themes: (a) Animal Maltreatment by Partner as a Tactic of Coercive Power and Control, (b) Animal Maltreatment by Partner as Discipline or Punishment of Pet, (c) Animal Maltreatment by Children, (d) Emotional and Psychological Impact of Animal Maltreatment Exposure, and (e) Pets as an Obstacle to Effective Safety Planning. Results demonstrate the potential impact of animal maltreatment exposure on women and child IPV survivors’ health and safety

    Remembering Forward: Neural Correlates of Memory and Prediction in Human Motor Adaptation

    Get PDF
    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions – including prefrontal, parietal and hippocampal cortices – exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures
    • …
    corecore