258 research outputs found

    Selecting biomedical data sources according to user preferences

    Get PDF
    Motivation: Biologists are now faced with the problem of integrating information from multiple heterogeneous public sources with their own experimental data contained in individual sources. The selection of the sources to be considered is thus critically important. Results: Our aim is to support biologists by developing a module based on an algorithm that presents a selection of sources relevant to their query and matched to their own preferences. We approached this task by investigating the characteristics of biomedical data and introducing several preference criteria useful for bioinformaticians. This work was carried out in the framework of a project which aims to develop an integrative platform for the multiple parametric analysis of cancer. We illustrate our study through an elementary biomedical query occurring in a CGH analysis scenario

    A Small Molecule That Binds and Inhibits the ETV1 Transcription Factor Oncoprotein

    Get PDF
    Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed “undruggable” by conventional methods. Here, we used small-molecule microarray screens to identify and characterize drug-like compounds that modulate the biologic function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacologic ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins.National Cancer Institute (U.S.) (Initiative for Chemical Genetics Contract N01-CO-12400)National Cancer Institute (U.S.) (Cancer Target Discovery and Development Network RC2 CA148399

    A Small Molecule that Binds and Inhibits the ETV1 Transcription Factor Oncoprotein

    Get PDF
    Members of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing\u27s sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed “undruggable” by conventional methods. Here, we used small-molecule microarray (SMM) screens to identify and characterize drug-like compounds that modulate the biological function of ETV1. We identified the 1,3,5-triazine small molecule BRD32048 as a top candidate ETV1 perturbagen. BRD32048 binds ETV1 directly, modulating both ETV1-mediated transcriptional activity and invasion of ETV1-driven cancer cells. Moreover, BRD32048 inhibits p300-dependent acetylation of ETV1, thereby promoting its degradation. These results point to a new avenue for pharmacological ETV1 inhibition and may inform a general means to discover small molecule perturbagens of transcription factor oncoproteins

    Nuclear Factor I/B is an Oncogene in Small Cell Lung Cancer

    Get PDF
    Small cell lung cancer (SCLC) is an aggressive cancer often diagnosed after it has metastasized. Despite the need to better understand this disease, SCLC remains poorly characterized at the molecular and genomic levels. Using a genetically engineered mouse model of SCLC driven by conditional deletion of Trp53 and Rb1 in the lung, we identified several frequent, high-magnitude focal DNA copy number alterations in SCLC. We uncovered amplification of a novel, oncogenic transcription factor, Nuclear factor I/B (Nfib), in the mouse SCLC model and in human SCLC. Functional studies indicate that NFIB regulates cell viability and proliferation during transformation.National Cancer Institute (U.S.) (grant P30-CA14051)David H. Koch Institute for Integrative Cancer Research at MIT (Ludwig Center for Molecular Oncology)Howard Hughes Medical InstituteAlfred P. Sloan Foundation (Research Fellowship)International Association for the Study of Lung Cance

    A Novel Epigenetic Phenotype Associated With the Most Aggressive Pathway of Bladder Tumor Progression

    Get PDF
    International audienceBackground: Epigenetic silencing can extend to whole chromosomal regions in cancer. There have been few genome-wide studies exploring its involvement in tumorigenesis.Methods: We searched for chromosomal regions affected by epigenetic silencing in cancer by using Affymetrix microarrays and real-time quantitative polymerase chain reaction to analyze RNA from 57 bladder tumors compared with normal urothelium. Epigenetic silencing was verified by gene re-expression following treatment of bladder cell lines with 5-aza-deoxycytidine, a DNA demethylating agent, and trichostatin A, a histone deacetylase inhibitor. DNA methylation was studied by bisulfite sequencing and histone methylation and acetylation by chromatin immunoprecipitation. Clustering was used to distinguish tumors with multiple regional epigenetic silencing (MRES) from those without and to analyze the association of this phenotype with histopathologic and molecular types of bladder cancer. The results were confirmed with a second panel of 40 tumor samples and extended in vitro with seven bladder cancer cell lines. All statistical tests were two-sided.Results: We identified seven chromosomal regions of contiguous genes that were silenced by an epigenetic mechanism. Epigenetic silencing was not associated with DNA methylation but was associated with histone H3K9 and H3K27 methylation and histone H3K9 hypoacetylation. All seven regions were concordantly silenced in a subgroup of 26 tumors, defining an MRES phenotype. MRES tumors exhibited a carcinoma in situ-associated gene expression signature (25 of 26 MRES tumors vs 0 of 31 non-MRES tumors, P < 10⁻¹⁴), rarely carried FGFR3 mutations (one of 26 vs 22 of 31 non-MRES tumors, P < 10⁻¹⁶), and contained 25 of 33 (76%) of the muscle-invasive tumors. Cell lines derived from aggressive bladder tumors presented epigenetic silencing of the same regions.Conclusions: We have identified an MRES phenotype characterized by the concomitant epigenetic silencing of several chromosomal regions, which, in bladder cancer, is specifically associated with the carcinoma in situ gene expression signature
    corecore