34 research outputs found

    Single Cs Atoms as Collisional Probes in a large Rb Magneto-Optical Trap

    Full text link
    We study cold inter-species collisions of Caesium and Rubidium in a strongly imbalanced system with single and few Cs atoms. Observation of the single atom fuorescence dynamics yields insight into light-induced loss mechanisms, while both subsystems can remain in steady-state. This significantly simplifies the analysis of the dynamics, as Cs-Cs collisions are effectively absent and the majority component remains unaffected, allowing us to extract a precise value of the Rb-Cs collision parameter. Extending our results to ground state collisions would allow to use single neutral atoms as coherent probes for larger quantum systems.Comment: 6 pages, 4 figure

    Cavity-assisted measurement and coherent control of collective atomic spin oscillators

    Full text link
    We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to those observed in cavity optomechanics, including cavity amplification, damping, and optical spring shifts. These effects arise from autonomous optical feedback onto the atomic spin dynamics, conditioned by the cavity spectrum. We use this feedback to stabilize the spin in either its high- or low-energy state, where, in equilibrium with measurement back-action heating, it achieves a steady-state temperature, indicated by an asymmetry between the Stokes and anti-Stokes scattering rates. For sufficiently large Larmor frequency, such feedback stabilizes the spin ensemble in a nearly pure quantum state, in spite of continuous measurement by the cavity field.Comment: 5 pages, 4 figures, and supplemental materia

    Single impurity atoms immersed in an ultracold gas

    Get PDF
    In this thesis, experiments with an ultracold gas doped with few and single atoms of another species are presented. The techniques to adequately prepare and manipulate an ultracold Rb gas and to dope it with a precisely known number of few Cs atoms are introduced. These techniques allow the time-resolved observation of the sympathetic cooling of initially laser-cooled, cold impurity atoms into the ultracold temperature regime of the Rb buffer gas. During the cooling, the confinement of the impurity atom is enhanced to a reduced volume inside the buffer gas, which increases the interspecies collision rate. By analyzing the cooling process, the interspecies scattering cross section is estimated. The lifetime of the resulting hybrid system is limited by three-body recombination of the impurity atom with atoms of the buffer gas. The atomic resolution of the impurity atom number allows the determination of the lifetime atom-by-atom. Additional information is gained from the precisely known fluctuations of the number of lost impurity atoms. This information is exploited to assign the three-body losses unambiguously to a single loss channel. The interaction of an impurity atom in a quantum-mechanical superposition state with the buffer gas is of special interest for future experiments. First experiments into this direction are presented at the end of the thesis.Gegenstand dieser Arbeit ist ein mit wenigen und einzelnen Fremdatomen dotiertes, ultrakaltes Gas. Die notwendigen Techniken, um ein ultrakaltes Rb Gas zu erzeugen, geeignet zu manipulieren und gezielt mit einer genau bekannten Anzahl weniger Cs Atome zu dotieren, wurden im Rahmen dieser Arbeit entwickelt und werden vorgestellt. Diese Techniken erlauben es, das sympathetische Kühlen der anfangs laser-gekühlten, kalten "Störatome" in das Regime ultrakalter Temperaturen des Rb Puffergases zeitaufgelöst zu beobachten. Wärend des Kühlens wird das Störatom in einem immer kleiner werdenden Volumen innerhalb des Puffergases gefangen, was zu einer Verstärkung der Stoßrate führt. Durch die Analyse des Kühlvorgangs wird die Streulänge der elastischen Zweikörperstöße abgeschätzt. Die Lebensdauer des so erzeugten Hybridsystems ist begrenzt durch Dreikörperrekombination des Störatoms mit Atomen des Puffergases. Die atomare Auflösung der Anzahl der Störatome erlaubt die Bestimmung der Lebensdauer Atom für Atom

    A low phase noise cavity transmission self-injection locked laser system for atomic physics experiments

    Full text link
    Lasers with high spectral purity are indispensable for optical clocks and coherent manipulation of atomic and molecular qubits for applications such as quantum computing and quantum simulation. Stabilisation of the laser to a reference can provide a narrow linewidth and high spectral purity. However, widely-used diode lasers exhibit fast phase noise that prevents high fidelity qubit manipulation. Here we demonstrate a self-injection locked diode laser system utilizing a medium finesse cavity. The cavity not only provides a stable resonance frequency, but at the same time acts as a low-pass filter for phase noise beyond the cavity linewidth of around 100 kHz, resulting in low phase noise from dc to the injection lock limit. We model the expected laser performance and benchmark it using a single trapped 40^{40}Ca+^{+}-ion as a spectrum analyser. We show that the fast phase noise of the laser at relevant Fourier frequencies of 100 kHz to >2 MHz is suppressed to a noise floor of between -110 dBc/Hz and -120 dBc/Hz, an improvement of 20 to 30 dB over state-of-the-art Pound-Drever-Hall-stabilized extended-cavity diode lasers. This strong suppression avoids incoherent (spurious) spin flips during manipulation of optical qubits and improves laser-driven gates in using diode lasers with applications in quantum logic spectroscopy, quantum simulation and quantum computation.Comment: 10 pages, 4 figure

    Robust optical clock transitions in trapped ions using dynamical decoupling

    Get PDF
    We present a novel method for engineering an optical clock transition that is robust agaiast external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driving fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic field shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble ofions, and is relevant for several types of ions, such as 40Ca, Sr1", l38BiT and 176Lo". Taking a spherically symmetric Coulomb crystal formed by 400 40Ca+ ions as an example, we show through numerical simulations that the in homogeneous linewidth of teas of Hertz in such a crystal together with linear Zeeman shifts of order 10 MHz are reduced to form a linewidth of around 1 Hz. We estimate a two-order-of-magnitude reduction in averaging time compared tostate-of-the art single ion frequency references, assuming a probe laser fractional instability of 10~1 Furthermore, a statistical uncertainty reaching2.9 x 10"16 in 1 s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an 2/Al clock
    corecore