13 research outputs found

    High-coherence dual-comb interferometry with free-running lasers

    Get PDF
    La spectroscopie double-peigne est une technique qui consiste Ă  faire interfĂ©rer deux peignes de frĂ©quences laser lĂ©gĂšrement dĂ©synchronisĂ©s ayant sondĂ© un Ă©chantillon afin de retrouver sa signature spectrale avec une haute rĂ©solution et Ă  grande vitesse. Cependant, elle requiert deux lasers qui sont mutuellement cohĂ©rents, une contrainte qui est habituellement satisfaite par stabilisation active au prix d’une plus grande complexitĂ© matĂ©rielle. Cette thĂšse aborde ce problĂšme en prĂ©sentant des solutions qui permettent l’utilisation de peignes en opĂ©ration libre, simplifiant ainsi la technique du double-peigne. On dĂ©montre d’abord une plateforme laser compacte capable de gĂ©nĂ©rer une paire de peignes de frĂ©quences qui sont affectĂ©s de maniĂšre similaire par les perturbations environnementales. Elle est basĂ©e sur une puce de verre dopĂ©e Ă  l’erbium contenant plusieurs guides d’ondes inscrits par laser et sĂ©parĂ©s de quelques centaines de microns. Deux guides adjacents sont pompĂ©s simultanĂ©ment et opĂ©rĂ©s en rĂ©gime de synchronisation modale Ă  ∌ 1 GHz dans la bande de 1.5 ÎŒm pour fournir une paire de peignes corrĂ©lĂ©s. Le bruit de frĂ©quence en opĂ©ration libre de cette source est ensuite caractĂ©risĂ© et on estime un temps de cohĂ©rence mutuelle qui dĂ©passe le temps de mesure requis pour obtenir un spectre Ă  haute rĂ©solution. Ceci est rendu possible grĂące Ă  l’utilisation de lasers qui sont intrinsĂšquement peu bruitĂ©s, Ă  l’intĂ©gration mĂ©canique de la source, et Ă  l’utilisation d’une grande diffĂ©rence entre les cadences des peignes. On prĂ©sente aussi deux algorithmes de correction qui, lorsque combinĂ©s avec notre source double-peigne, permettent d’étendre artificiellement son temps de cohĂ©rence afin d’augmenter le temps de moyennage utile sans sacrifier la rĂ©solution spectrale. Ces algorithmes estiment et compensent la phase et le temps d’arrivĂ©e des interfĂ©rogrammes mesurĂ©s, et ce sans recourir Ă  aucune mesure externe des fluctuations des peignes. Ils sont d’abord dĂ©crits en dĂ©tail puis leurs limites sont dĂ©terminĂ©es de façon quantitative Ă  partir des paramĂštres des peignes et de leur bruit de frĂ©quence relatif, oĂč une grande diffĂ©rence entre les cadences apparaĂźt comme Ă©tant la clĂ© d’une correction rĂ©ussie. Finalement, les performances du spectromĂštre double-peigne assistĂ© par la correction logicielle sont dĂ©montrĂ©es en mesurant le spectre de transmission de l’acĂ©tylĂšne et du cyanure d’hydrogĂšne avec un Ă©chantillonnage spectral de ∌1 GHz. La qualitĂ© des mesures est validĂ©e par comparaison avec des spectres simulĂ©s Ă  partir de donnĂ©es connues.Dual-comb spectroscopy is a technique where two slightly detuned laser frequency combs are interfered together after probing a sample under study in order to retrieve its spectral signature with a high resolution and at high speed. However, it requires two lasers that are mutually coherent, a constraint that is most often satisfied by active stabilization at the cost of an increased hardware complexity. This thesis tackles this issue by presenting solutions that allow the use of free-running combs, thus simplifying the dual-comb technique. First, we demonstrate a compact laser platform able to generate a pair of frequency combs that are similarly affected by environmental perturbations. It is based on an erbium-doped glass chip containing a number of ultrafast-laser-inscribed waveguides separated by a few hundred microns. Two adjacent waveguides are pumped simultaneously and passively mode-locked at ∌1 GHz in the 1.5 ÎŒm band to deliver a pair of correlated frequency combs. The free-running frequency noise of this source is characterized thoroughly and its mutual coherence time is found to exceed the measurement time required to retrieve a high-resolution spectrum. This is made possible by the use of intrinsically low-noise waveguide lasers, by the dual-comb source’s mechanical integration, and by the use of a large repetition rate difference between the combs. We also present two correction algorithms that, when combined with our dual-comb source, allow to artificially extend its coherence time in order to increase the useful averaging time without sacrificing the spectral resolution. These algorithms work by estimating and compensating the phase and timing of the measured interferograms without relying on any external measurement of the combs’ fluctuations. They are first described in detail and their limitations are determined quantitatively in terms of the combs’ parameters and relative frequency noise, where a large repetition rate difference appears to be the key to a successful correction. Finally, the performance of the dual-comb spectrometer assisted by a software correction is demonstrated by measuring the transmission spectrum of acetylene and hydrogen cyanide with a spectral sampling of ∌1 GHz. The quality of the measurements is validated by comparison to spectra simulated from known data

    Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling

    Get PDF
    We present a straightforward and efficient method to reduce the mode spacing of a frequency comb based on binary pseudo-random phase modulation of its pulse train. As a proof of concept, we use such a densified comb to perform dual-comb spectroscopy of a long-delay Mach–Zehnder interferometer and a high-quality-factor microresonator with sub-MHz spectral sampling. Since this approach is based on binary phase modulation, it combines all the advantages of other densification techniques: simplicity, single-step implementation, and conservation of the initial comb’s power
    corecore