33 research outputs found

    Multiple layers of complexity in cis-regulatory regions of developmental genes

    Get PDF
    Genomes contain the necessary information to ensure that genes are expressed in the right place, at the right time, and with the proper rate. Metazoan developmental genes often possess long stretches of DNA flanking their coding sequences and/or large introns which contain elements that influence gene expression. Most of these regulatory elements are relatively small and can be studied in isolation. For example, transcriptional enhancers, the elements that generate the expression pattern of a gene, have been traditionally studied with reporter constructs in transgenic animals. These studies have provided and will provide invaluable insights into enhancer evolution and function. However, this experimental approach has its limits; often, enhancer elements do not faithfully recapitulate native expression patterns. This fact suggests that additional information in cis-regulatory regions modulates the activity of enhancers and other regulatory elements. Indeed, recent studies have revealed novel functional aspects at the level of whole cis-regulatory regions. First, the discovery of "shadow enhancers." Second, the ubiquitous interactions between cis-regulatory elements. Third, the notion that some cis-regulatory regions may not function in a modular manner. Last, the effect of chromatin conformation on cis-regulatory activity. In this article, I describe these recent findings and discuss open questions in the field.Fil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Unraveling the ecological processes modulating the population structure of Escherichia coli in a highly polluted urban stream network

    Get PDF
    Escherichia coli dynamics in urban watersheds are affected by a complex balance among external inputs, niche modulation and genetic variability. To explore the ecological processes influencing E. coli spatial patterns, we analyzed its abundance and phylogenetic structure in water samples from a stream network with heterogeneous urban infrastructure and environmental conditions. Our results showed that environmental and infrastructure variables, such as macrophyte coverage, DIN and sewerage density, mostly explained E. coli abundance. Moreover, main generalist phylogroups A and B1 were found in high proportion, which, together with an observed negative relationship between E. coli abundance and phylogroup diversity, suggests that their dominance might be due to competitive exclusion. Lower frequency phylogroups were associated with sites of higher ecological disturbance, mainly involving simplified habitats, higher drainage infrastructure and septic tank density. In addition to the strong negative relationship between phylogroup diversity and dominance, the occurrence of these phylogroups would be associated with increased facilitated dispersal. Nutrients also contributed to explaining phylogroup distribution. Our study proposes the differential contribution of distinct ecological processes to the patterns of E. coli in an urban watershed, which is useful for the monitoring and management of fecal pollution.Fil: Saraceno, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Gómez Lugo, Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Ortiz, Nicolás. Provincia de Mendoza. Ministerio de Infraestructura y Vivienda. Secretaria de Obras Publicas. Instituto Nacional del Agua; ArgentinaFil: Gómez, Bárbara M.. Provincia de Mendoza. Ministerio de Infraestructura y Vivienda. Secretaria de Obras Publicas. Instituto Nacional del Agua; ArgentinaFil: Sabio y García, Carmen Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Graziano, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Evolving Genital Structures: A Deep Look at Network Co-option

    Get PDF
    Novel body structures are often generated by the redeployment of ancestral components of the genome. In this issue of Developmental Cell, Glassford et al. (2015) present a thorough analysis of the co-option of a gene regulatory network in the origin of an evolutionary novelty.Fil: Preger-Ben Noon, Ella. Howard Hughes Medical Institute; Estados UnidosFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Insights into the evolution and function of the Asr gene family

    No full text
    Los genes Asr están presentes en plantas con semilla formando, en general, familias génicas de pocos miembros. Su función precisa es desconocida hasta el momento, pero estudios recientes llevan a pensar que estos genes son factores de transcripción involucrados en la regulación del transporte de azúcares en la planta. En esta tesis hemos analizado la evolución de la familia génica Asr en plantas con semilla con un especial énfasis en el género Lycopersicon (tomates). Encontramos que las relaciones de ortología de las proteínas ASR pueden definirse sólo entre especies cercanas evolutivamente. En un árbol filogenético, las proteínas ASR de tomate y papa forman un cluster consistente, separado de las ASR de otras dicotiledóneas, monocotiledóneas y gimnospermas. Las dos observaciones anteriores pueden explicarse por eventos de evolución concertada y “nacimiento y muerte” de genes. Asimismo, investigamos la evolución de los cuatro Asr en especies silvestres de tomate y pudimos comprobar que Asr1 tiene una evolución más lenta que los otros tres genes, tanto a nivel sinónimo como de reemplazo. Creemos que este patrón se debe a sus altos niveles de expresión y a sus diversas funciones en distintos tejidos de la planta. Además, hemos generado plantas transgénicas de papa (Solanum tuberosum) y tabaco (Nicotiana tabacum) que sobreexpresan o tienen silenciado el gen Asr1. Del análisis de estas plantas podemos concluir que este gen regula los niveles de hexosas en la célula, pero no de otros azúcares. En este sentido, tenemos evidencias que indican que Asr1 estaría directa o indirectamente controlando los niveles de algunos transportadores de hexosas en tejidos “destino”, por lo tanto actuando como regulador de la importación de estos azúcares. Por último, por medio de microscopia de fuerza atómica, observamos el pegado de la proteína ASR1 al ADN. Confirmando evidencia previa, vimos dímeros de ASR1 interaccionando con un ADN doble cadena.Asr genes are present in the genomes of seed plants, in general forming small gene families. Their precise function is currently unknown, but recent reports have suggested that Asr genes encode transcription factors involved in the regulation of sugar mobilization in planta. In this thesis we have analyzed the evolution of the Asr gene family in seed plants and particularly focused in the genus Lycopersicon (tomatoes). We have found that the orthology relations among the members can only be inferred between closely related species. In a phylogenetic tree, ASR proteins from tomato and potato form a consistent cluster, separated from ASRs from other dicots, monocots and gymnosperms. These observations can be explained by events of concerted evolution and “birth and death of genes”. At the same time, we investigated the evolution of the four Asrs in tomato wild species. We could see that Asr1 has a slower evolutionary rate both at synonymous and replacement sites when compared to the other three genes. We think that this pattern is caused by its high expression level and multiple functions in different tissues of the plant. In addition, we generated potato (Solanum tuberosum) and tobacco (Nicotiana tabacum) transgenic plants that overexpress or silence Asr1 gene. From the analysis of these plants we can conclude that this gene is regulating the quantities of hexoses (but not other sugars) in the cells. In this direction, we have evidence supporting that Asr1 would be directly or indirectly involved in controlling the levels of hexose transporters in “sink” tissues, thereby acting as a regulator of hexose uptake. Finally, by means of atomic force microscopy, we observed ASR1 protein bound to DNA. Corroborating previous evidence, we saw ASR1 dimers interacting with double-stranded DNA.Fil:Frankel, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    The structure and evolution of cisregulatory regions: The shavenbaby story

    No full text
    In this paper, we provide a historical account of the contribution of a single line of research to our current understanding of the structure of cis-regulatory regions and the genetic basis for morphological evolution. We revisit the experiments that shed light on the evolution of larval cuticular patterns within the genus Drosophila and the evolution and structure of the shavenbaby gene. We describe the experiments that led to the discovery that multiple genetic changes in the cis-regulatory region of shavenbaby caused the loss of dorsal cuticular hairs (quaternary trichomes) in first instar larvae of Drosophila sechellia. We also discuss the experiments that showed that the convergent loss of quaternary trichomes in D. sechellia and Drosophila ezoana was generated by parallel genetic changes in orthologous enhancers of shavenbaby. We discuss the observation that multiple shavenbaby enhancers drive overlapping patterns of expression in the embryo and that these apparently redundant enhancers ensure robust shavenbaby expression and trichome morphogenesis under stressful conditions. All together, these data, collected over 13 years, provide a fundamental case study in the fields of gene regulation and morphological evolution, and highlight the importance of prolonged, detailed studies of single genes.Fil: Stern, David L.. Howard Hughes Medical Institute; Estados UnidosFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Selection and Complex Multigene Traits

    No full text
    Phenotypic characters that display continuous variation are usually called ‘quantitative traits’ or ‘complex traits’. Alternatively, geneticists refer to them as ‘multigene traits’, because the underlying genetic architecture is assumed to be polygenic. Analyses of the genetic architecture of diverse quantitative traits suggest that the number of loci (quantitative trait loci, QTLs) affecting trait variation can be very different. Moreover, experimental studies report contrasting genetic architectures, where either large‐effect QTLs or small‐effect QTLs explain most of the phenotypic variation. In addition, recent reports highlight the pervasiveness of epistasis. Considerable evidence, obtained with the QST–FST methodology, supports the idea that natural selection plays a key role in the evolution of complex traits. Nevertheless, the identification of a representative number of genes underlying QTLs is necessary to determine the contribution of selection, drift and gene flow for the evolution of complex traits.Fil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Fanara, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    A complex gene regulatory architecture underlies the development and evolution of cuticle morphology in Drosophila

    No full text
    The cuticle of insects is decorated with non-sensory hairs called trichomes. A few Drosophila species independently lost most of the dorso-lateral trichomes on first instar larvae. Genetic experiments revealed that this naked cuticle phenotype was caused by the evolution of enhancer function at the ovo/shavenbaby (ovo/svb) locus. Here we explore how this discovery catalyzed major new insights into morphological evolution in different developmental contexts, enhancer pleiotropy in gene regulation and the functionality and evolution of the Svb gene regulatory network (GRN). Taken together this highlights the importance of understanding the architecture and evolution of gene regulatory networks in detail and the great potential for further study of the Svb GRN.Fil: Kittelmann, Sebastian. Oxford Brookes University; Reino UnidoFil: Preger Ben Noon, Ella. No especifíca;Fil: McGregor, Alistair P.. Oxford Brookes University; Reino UnidoFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity

    No full text
    The current paradigm in the field of gene regulation postulates that regulatory information for generating gene expression is organized into modules (enhancers), each containing the information for driving gene expression in a single spatiotemporal context. This modular organization is thought to facilitate the evolution of gene expression by minimizing pleiotropic effects. Here we review recent studies that provide evidence of quite the opposite: (i) enhancers can function in multiple developmental contexts, implying that enhancers can be pleiotropic, (ii) transcription factor binding sites within pleiotropic enhancers are reused in different contexts, and (iii) pleiotropy impacts the structure and evolution of enhancers. Altogether, this evidence suggests that enhancer pleiotropy is pervasive in animal genomes, challenging the commonly held view of modularity.Fil: Sabarís Di Lorenzo, Gonzalo Julián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Laiker, Ian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Preger Ben Noon, Ella. The Ruth And Bruce Rappaport Faculty Of Medicine; IsraelFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Parental age influences developmental stability of the progeny in Drosophila

    Get PDF
    The stochastic nature of biochemical processes is a source of variability that influences developmental stability. Developmental instability (DI) is often estimated through fluctuating asymmetry (FA), a parameter that deals with within-individual variation in bilateral structures. A relevant goal is to shed light on how environment, physiology and genotype relate to DI, thus providing a more comprehensive view of organismal development. Using Drosophila melanogaster isogenic lines, we investigated the effect of parental age, parental diet and offspring heterozygosity on DI. In this work, we have uncovered a clear relationship between parental age and offspring asymmetry. We show that asymmetry of the progeny increases concomitantly with parental age. Moreover, we demonstrate that enriching the diet of parents mitigates the effect of age on offspring symmetry. We show as well that increasing the heterozygosity of the progeny eliminates the effect of parental age on offspring symmetry. Taken together, our results suggest that diet, genotype and age of the parents interact to determine offspring DI in wild populations. These findings provide us with an avenue to understand the mechanisms underlying DI.Fil: Colines, Betina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Cabrera Rodríguez, Nahuel Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Carreira, Valeria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Frankel, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin
    corecore