53 research outputs found

    Covariant solution of the three-quark problem in quantum field theory: the nucleon

    Full text link
    We provide details on a recent solution of the nucleon's covariant Faddeev equation in an explicit three-quark approach. The full Poincare-covariant structure of the three-quark amplitude is implemented through an orthogonal basis obtained from a partial-wave decomposition. We employ a rainbow-ladder gluon exchange kernel which allows for a comparison with meson Bethe-Salpeter and baryon quark-diquark studies. We describe the construction of the three-quark amplitude in full detail and compare it to a notation widespread in recent publications. Finally, we discuss first numerical results for the nucleon's amplitude.Comment: 10 pages, 4 figures, 4 tables; Contributed to the 19th International IUPAP Conference on Few-Body Problems in Physics, Bonn, Germany, August 31 - September 5, 200

    Hadron properties from QCD bound-state equations: A status report

    Full text link
    Employing an approach based on the Green functions of Landau-gauge QCD, some selected results from a calculation of meson and baryon properties are presented. A rainbow-ladder truncation to the quark Dyson-Schwinger equation is used to arrive at a unified description of mesons and baryons by solving Bethe-Salpeter and covariant Faddeev equations, respectively.Comment: 6 pages, 4 figures; Plenary talk given at the 5-th Int. Conf. on Quarks and Nuclear Physics, Beijing, September 21-26,200

    The \rho\rho interaction in the hidden gauge formalism and the f_0(1370) and f_2(1270) resonances

    Full text link
    We have studied the interaction of vectors mesons within the hidden gauge formalism and applied it to the particular case of the ρρ\rho \rho interaction. We find a strong attraction in the isospin, spin channels I,S=0,0 and 0,2, which is enough to bind the ρρ\rho \rho system. We also find that the attraction in the I,S=0,2 channel is much stronger than in the 0,0 case. The states develop a width when the ρ\rho mass distribution is considered, and particularly when the ππ\pi \pi decay channel is turned on. Using a regularization scheme with cut offs of natural size, we obtain results in fair agreement with the mass and the width of the f0(1370)f_0(1370) and f2(1270)f_2(1270) meson states, providing a natural explanation of why the tensor state is more bound than the scalar and offering a new picture for these states, which would be dynamically generated from the ρρ\rho \rho interaction or, in simpler words, ρρ\rho \rho molecular states.Comment: Version accepted for publicatio

    Discussions on Stability of Diquarks

    Full text link
    Since the birth of the quark model, the diquark which is composed of two quarks has been considered as a substantial structure of color anti-triplet. This is not only a mathematical simplification for dealing with baryons, but also provides a physical picture where the diquark would behave as a whole object. It is natural to ask whether such a structure is sufficiently stable against external disturbance. The mass spectra of the ground states of the scalar and axial-vector diquarks which are composed of two-light (L-L), one-light-one-heavy (H-L) and two-heavy quarks (H-H) respectively have been calculated in terms of the QCD sum rules. We suggest a criterion as the quantitative standard for the stability of the diquark. It is the gap between the masses of the diquark and s0\sqrt{s_0} where s0s_0 is the threshold of the excited states and continuity, namely the larger the gap is, the more stable the diquark would be. In this work, we calculate the masses of the type H-H to complete the series of the spectra of the ground state diquarks. However, as the criterion being taken, we find that all the gaps for the various diquaks are within a small range, especially the gap for the diquark with two heavy quarks which is believed to be a stable structure, is slightly smaller than that for other two types of diquarks, therefore we conclude that because of the large theoretical uncertainty, we cannot use the numerical results obtained with the QCD sum rules to assess the stability of diquarks, but need to invoke other theoretical framework.Comment: 14 pages, 4 figure
    corecore