2,709 research outputs found

    Effect of Co doping and hydrostatic pressure on SrFe2As2

    Full text link
    We report a pressure study on electron doped SrFe2x_{2-x}Cox_xAs2_2 by electrical-resistivity (ρ\rho) and magnetic-susceptibility (χ\chi) experiments. Application of either external pressure or Co substitution rapidly suppresses the spin-density wave ordering of the Fe moments and induces superconductivity in SrFe2_2As2_2. At x=0.2x=0.2 the broad superconducting (SC) dome in the TpT-p phase diagram exhibits its maximum Tc,max=20T_{c,{\rm max}}=20 K at a pressure of only pmax0.75p_{\rm max}\approx 0.75 GPa. In SrFe1.5_{1.5}Co0.5_{0.5}As2_2 no superconductivity is observed anymore up to 2.8 GPa. Upon increasing the Co concentration the maximum of the SC dome shifts toward lower pressure accompanied by a decrease in the value of Tc,maxT_{c,{\rm max}}. Even though, superconductivity is induced by both tuning methods, Co substitution leads to a much more robust SC state. Our study evidences that in SrFe2x_{2-x}Cox_xAs2_2 both, the effect of pressure and Co-substitution, have to be considered in order to understand the SC phase-diagram and further attests the close relationship of SrFe2_2As2_2 and its sister compound BaFe2_2As2_2.Comment: 6 pages, 6 figure

    Avoided ferromagnetic quantum critical point in CeRuPO

    Get PDF
    CeRuPO is a rare example of a ferromagnetic (FM) Kondo-lattice system. External pressure suppresses the ordering temperature to zero at about pc3p_c\approx3 GPa. Our ac-susceptibility and electrical-resistivity investigations evidence that the type of magnetic ordering changes from FM to antiferromagnetic (AFM) at about p0.87p^*\approx0.87 GPa. Studies in applied magnetic fields suggest that ferromagnetic and antiferromagnetic correlations compete for the ground state at p>pp>p^*, but finally the AFM correlations win. The change in the magnetic ground-state properties is closely related to the pressure evolution of the crystalline-electric-field level (CEF) scheme and the magnetic Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. The N\'{e}el temperature disappears abruptly in a first-order-like fashion at pcp_c, hinting at the absence of a quantum critical point. This is consistent with the low-temperature transport properties exhibiting Landau-Fermi-liquid (LFL) behavior in the whole investigated pressure range up to 7.5 GPa.Comment: 12 figure

    Pair breaking by nonmagnetic impurities in the noncentrosymmetric superconductor CePt3Si

    Full text link
    We have studied the effect of Ge substitution and pressure on the heavy-fermion superconductor CePt3Si. Ge substitution on the Si site acts as negative chemical pressure leading to an increase in the unit-cell volume but also introduces chemical disorder. We carried out electrical resistivity and ac heat-capacity experiments under hydrostatic pressure on CePt3Si1-xGex (x=0, 0.06). Our experiments show that the suppression of superconductivity in CePt3Si1-xGex is mainly caused by the scattering potential, rather than volume expansion, introduced by the Ge dopants. The antiferromagnetic order is essentially not affected by the chemical disorder.Comment: 4 pages, 4 figure

    Classical bifurcation at the transition from Rabi to Josephson dynamics

    Full text link
    We report on the experimental realization of an internal bosonic Josephson junction in a Rubidium spinor Bose-Einstein condensate. The measurement of the full time dynamics in phase space allows the characterization of the theoretically predicted π\pi-phase modes and quantitatively confirms analytical predictions, revealing a classical bifurcation. Our results suggest that this system is a model system which can be tuned from classical to the quantum regime and thus is an important step towards the experimental investigation of entanglement generation close to critical points

    Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors

    Full text link
    We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigated by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic

    Temperature - pressure phase diagram of the superconducting iron pnictide LiFeP

    Full text link
    Electrical-resistivity and magnetic-susceptibility measurements under hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting LiFeP. A broad superconducting (SC) region exists in the temperature - pressure (T-p) phase diagram. No indications for a spin-density-wave transition have been found, but an enhanced resistivity coefficient at low pressures hints at the presence of magnetic fluctuations. Our results show that the superconducting state in LiFeP is more robust than in the isostructural and isoelectronic LiFeAs. We suggest that this finding is related to the nearly regular [FeP_4] tetrahedron in LiFeP.Comment: 4 pages, 4 figure

    Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy

    Full text link
    Resonant ultrasound spectroscopy and magnetic susceptibility experiments have been used to characterize strain coupling phenomena associated with structural and magnetic properties of the shape-memory Heusler alloy series Ni50+x_{50+x}Mn25x_{25-x}Ga25_{25} (x=0x=0, 2.5, 5.0, and 7.5). All samples exhibit a martensitic transformation at temperature TMT_M and ferromagnetic ordering at temperature TCT_C, while the pure end member (x=0x=0) also has a premartensitic transition at TPMT_{PM}, giving four different scenarios: TC>TPM>TMT_C>T_{PM}>T_M, TC>TMT_C>T_M without premartensitic transition, TCTMT_C\approx T_M, and TC<TMT_C<T_M. Fundamental differences in elastic properties i.e., stiffening versus softening, are explained in terms of coupling of shear strains with three discrete order parameters relating to magnetic ordering, a soft mode and the electronic instability responsible for the large strains typical of martensitic transitions. Linear-quadratic or biquadratic coupling between these order parameters, either directly or indirectly via the common strains, is then used to explain the stabilities of the different structures. Acoustic losses are attributed to critical slowing down at the premartensite transition, to the mobility of interphases between coexisting phases at the martensitic transition and to mobility of some aspect of the twin walls under applied stress down to the lowest temperatures at which measurements were made.Comment: 9 pages, 5 figure

    Direct measurements of the magnetocaloric effect in pulsed magnetic fields: The example of the Heusler alloy Ni50_{50}Mn35_{35}In15_{15}

    Full text link
    We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler alloy Ni50_{50}Mn35_{35}In15_{15} by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results in 6 T are compared with data obtained from heat-capacity experiments. We find a saturation of the inverse MCE, related to the first-order martensitic transition, with a maximum adiabatic temperature change of ΔTad=7\Delta T_{ad} = -7 K at 250 K and a conventional field-dependent MCE near the second-order ferromagnetic transition in the austenitic phase. The pulsed magnetic field data allow for an analysis of the temperature response of the sample to the magnetic field on a time scale of 10\sim 10 to 100 ms which is on the order of typical operation frequencies (10 to 100 Hz) of magnetocaloric cooling devices. Our results disclose that in shape-memory alloys the different contributions to the MCE and hysteresis effects around the martensitic transition have to be carefully considered for future cooling applications.Comment: 5 pages, 4 figure

    Magnetotransport in the CeIrIn5{_5} system: The influence of antiferromagnetic fluctuations

    Get PDF
    We present an overview of magnetotransport measurements on the heavy-fermion superconductor CeIrIn5_5. Sensitive measurements of the Hall effect and magnetoresistance (MR) are used to elucidate the low temperature phase diagram of this system. The normal-state magnetotransport is highly anomalous, and experimental signatures of a pseudogap-like precursor state to superconductivity as well as evidence for two distinct scattering times governing the Hall effect and the MR are observed. Our observations point out the influence of antiferromagnetic fluctuations on the magnetotransport in this class of materials. The implications of these findings, both in the context of unconventional superconductivity in heavy-fermion systems as well as in relation to the high temperature superconducting cuprates are discussed

    Temperature - pressure phase diagram of CeCoSi: Pressure induced high-temperature phase

    Full text link
    We have studied the temperature-pressure phase diagram of CeCoSi by electrical-resistivity experiments under pressure. Our measurements revealed a very unusual phase diagram. While at low pressures no dramatic changes and only a slight shift of the Ne\'{e}l temperature TNT_N (10\approx 10 K) are observed, at about 1.45 GPa a sharp and large anomaly, indicative of the opening of a spin-density-wave (SDW) gap, appears at a comparatively high temperature TS38T_S \approx 38 K. With further increasing pressure TST_S shifts rapidly to low temperatures and disappears at about 2.15 GPa, likely continuously in a quantum critical point, but without evidence for superconductivity. Even more surprisingly, we observed a clear shift of TST_S to higher temperatures upon applying a magnetic field. We discuss two possible origins for TST_S, either magnetic ordering of Co or a meta-orbital type of transition of Ce.Comment: 6 pages, 5 figure
    corecore