2,301 research outputs found

    Hydrogen equilibration in polycrystalline silicon

    Get PDF

    Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    Get PDF
    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed

    Hadronic unquenching effects in the quark propagator

    Full text link
    We investigate hadronic unquenching effects in light quarks and mesons. Within the non-perturbative continuum framework of Schwinger-Dyson and Bethe-Salpeter equations we quantify the strength of the back reaction of the pion onto the quark-gluon interaction. To this end we add a Yang-Mills part of the interaction such that unquenched lattice results for various current quark masses are reproduced. We find considerable effects in the quark mass function at low momenta as well as for the chiral condensate. The quark wave function is less affected. The Gell--Mann-Oakes-Renner relation is valid to good accuracy up to pion masses of 400-500 MeV. As a byproduct of our investigation we verify the Coleman theorem, that chiral symmetry cannot be broken spontaneously when QCD is reduced to 1+1 dimensions.Comment: 27 pages, 15 figures, minor corrections and clarifications; version to appear in PR

    Functional Relaxation and Guided Imagery as Complementary Therapy in Asthma: A Randomized Controlled Clinical Trial

    Get PDF
    Background: Asthma is a frequently disabling and almost invariably distressing disease that has a high overall prevalence. Although relaxation techniques and hypnotherapeutic interventions have proven their effectiveness in numerous trials, relaxation therapies are still not recommended in treatment guidelines due to a lack of methodological quality in many of the trials. Therefore, this study aims to investigate the efficacy of the brief relaxation technique of functional relaxation (FR) and guided imagery (GI) in adult asthmatics in a randomized controlled trial. Methods: 64 patients with extrinsic bronchial asthma were treated over a 4-week period and assessed at baseline, after treatment and after 4 months, for follow-up. 16 patients completed FR, 14 GI, 15 both FR and GI (FR/GI) and 13 received a placebo relaxation technique as the control intervention (CI). The forced expiratory volume in the first second (FEV 1) as well as the specific airway resistance (sR(aw)) were employed as primary outcome measures. Results: Participation in FR, GI and FR/GI led to increases in FEV 1 (% predicted) of 7.6 +/- 13.2, 3.3 +/- 9.8, and 8.3 +/- 21.0, respectively, as compared to -1.8 +/- 11.1 in the CI group at the end of the therapy. After follow-up, the increases in FEV 1 were 6.9 +/- 10.3 in the FR group, 4.4 +/- 7.3 in the GI and 4.5 +/- 8.1 in the FR/GI, compared to -2.8 +/- 9.2 in the CI. Improvements in sR(aw) (% predicted) were in keeping with the changes in FEV 1 in all groups. Conclusions: Our study confirms a positive effect of FR on respiratory parameters and suggests a clinically relevant long-term benefit from FR as a nonpharmacological and complementary therapy treatment option. Copyright (C) 2009 S. Karger AG, Base

    Critical behavior of two-dimensional cubic and MN models in the five-loop renormalization-group approximation

    Full text link
    The critical thermodynamics of the two-dimensional N-vector cubic and MN models is studied within the field-theoretical renormalization-group (RG) approach. The beta functions and critical exponents are calculated in the five-loop approximation and the RG series obtained are resummed using the Borel-Leroy transformation combined with the generalized Pad\'e approximant and conformal mapping techniques. For the cubic model, the RG flows for various N are investigated. For N=2 it is found that the continuous line of fixed points running from the XY fixed point to the Ising one is well reproduced by the resummed RG series and an account for the five-loop terms makes the lines of zeros of both beta functions closer to each another. For the cubic model with N\geq 3, the five-loop contributions are shown to shift the cubic fixed point, given by the four-loop approximation, towards the Ising fixed point. This confirms the idea that the existence of the cubic fixed point in two dimensions under N>2 is an artifact of the perturbative analysis. For the quenched dilute O(M) models (MNMN models with N=0) the results are compatible with a stable pure fixed point for M\geq1. For the MN model with M,N\geq2 all the non-perturbative results are reproduced. In addition a new stable fixed point is found for moderate values of M and N.Comment: 26 pages, 3 figure

    Exact Finite-Size-Scaling Corrections to the Critical Two-Dimensional Ising Model on a Torus

    Full text link
    We analyze the finite-size corrections to the energy and specific heat of the critical two-dimensional spin-1/2 Ising model on a torus. We extend the analysis of Ferdinand and Fisher to compute the correction of order L^{-3} to the energy and the corrections of order L^{-2} and L^{-3} to the specific heat. We also obtain general results on the form of the finite-size corrections to these quantities: only integer powers of L^{-1} occur, unmodified by logarithms (except of course for the leading logL\log L term in the specific heat); and the energy expansion contains only odd powers of L^{-1}. In the specific-heat expansion any power of L^{-1} can appear, but the coefficients of the odd powers are proportional to the corresponding coefficients of the energy expansion.Comment: 26 pages (LaTeX). Self-unpacking file containing the tex file and three macros (indent.sty, eqsection.sty, subeqnarray.sty). Added discussions on the results and new references. Version to be published in J. Phys.

    Triplet superconducting pairing and density-wave instabilities in organic conductors

    Full text link
    Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations and both intrachain and interchain repulsive interactions. We find a close proximity of spin-density- and charge-density-wave phases, singlet d-wave and triplet f-wave superconducting phases. There is a striking correspondence between our results and recent puzzling experimental findings in the Bechgaard salts, including the coexistence of spin-density-wave and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.Comment: 4 pages, 5 eps figure

    Holonomy of the Ising model form factors

    Full text link
    We study the Ising model two-point diagonal correlation function C(N,N) C(N,N) by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this expansion, weighting, by powers of a variable λ\lambda, the jj-particle contributions, fN,N(j) f^{(j)}_{N,N}. The corresponding λ \lambda extension of the two-point diagonal correlation function, C(N,N;λ) C(N,N; \lambda), is shown, for arbitrary λ\lambda, to be a solution of the sigma form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors fN,N(j) f^{(j)}_{N,N} are obtained and shown to have both a ``Russian doll'' nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral E E. Each fN,N(j) f^{(j)}_{N,N} is expressed polynomially in terms of the elliptic integrals E E and K K. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll'' structure. The previous λ \lambda-extensions, C(N,N;λ) C(N,N; \lambda) are, for singled-out values λ=cos(πm/n) \lambda= \cos(\pi m/n) (m,nm, n integers), also solutions of linear differential equations. These solutions of Painlev\'e VI are actually algebraic functions, being associated with modular curves.Comment: 39 page

    Square lattice Ising model susceptibility: Series expansion method and differential equation for χ(3)\chi^{(3)}

    Full text link
    In a previous paper (J. Phys. A {\bf 37} (2004) 9651-9668) we have given the Fuchsian linear differential equation satisfied by χ(3)\chi^{(3)}, the ``three-particle'' contribution to the susceptibility of the isotropic square lattice Ising model. This paper gives the details of the calculations (with some useful tricks and tools) allowing one to obtain long series in polynomial time. The method is based on series expansion in the variables that appear in the (n1)(n-1)-dimensional integrals representing the nn-particle contribution to the isotropic square lattice Ising model susceptibility χ\chi . The integration rules are straightforward due to remarkable formulas we derived for these variables. We obtain without any numerical approximation χ(3)\chi^{(3)} as a fully integrated series in the variable w=s/2/(1+s2)w=s/2/(1+s^{2}), where s=sh(2K) s =sh (2K), with K=J/kTK=J/kT the conventional Ising model coupling constant. We also give some perspectives and comments on these results.Comment: 28 pages, no figur

    The Magnetization of the 3D Ising Model

    Full text link
    We present highly accurate Monte Carlo results for simple cubic Ising lattices containing up to 2563256^3 spins. These results were obtained by means of the Cluster Processor, a newly built special-purpose computer for the Wolff cluster simulation of the 3D Ising model. We find that the magnetization M(t)M(t) is perfectly described by M(t)=(a0a1tθa2t)tβM(t)=(a_0-a_1 t^{\theta} - a_2 t) t^{\beta} , where t=(TcT)/Tct=(T_{\rm c}-T)/T_{\rm c}, in a wide temperature range 0.0005<t<0.260.0005 < t < 0.26 . If there exist corrections to scaling with higher powers of tt, they are very small. The magnetization exponent is determined as β=0.3269\beta=0.3269 (6). An analysis of the magnetization distribution near criticality yields a new determination of the critical point: Kc=J/kBTc=0.2216544K_{\rm c}=J/k_B T_{\rm c}=0.2216544, with a standard deviation of 31073\cdot 10^{-7}.Comment: 7 pages, 5 Postscript figure
    corecore