8 research outputs found

    Sensitivities and synergies of DUNE and T2HK

    Get PDF
    Long-baseline neutrino oscillation experiments, in particular the Deep Underground Neutrino Experiment (DUNE) and Tokai to Hyper-Kamiokande (T2HK), will lead the effort in the precision determination of the as yet unknown parameters of the leptonic mixing matrix. In this article, we revisit the potential of DUNE, T2HK and their combination in light of the most recent experimental information. As well as addressing more conventional questions, we pay particular attention to the attainable precision on δ , which is playing an increasingly important role in the physics case of the long-baseline program. We analyze the complementarity of the two designs, identify the benefit of a program comprising distinct experiments and consider how best to optimize the global oscillation program. This latter question is particularly pertinent in light of a number of alternative design options which have recently been mooted: a Korean second detector for T2HK and different beams options at DUNE. We study the impact of these options and quantify the synergies between alternative proposals, identifying the best means of furthering our knowledge of the fundamental physics of neutrino oscillation

    Precision neutrino experiments vs the Littlest Seesaw

    No full text
    We study to what extent upcoming precision neutrino oscillation experiments will be able to exclude one of the most predictive models of neutrino mass and mixing: the Littlest Seesaw. We show that this model provides a good fit to current data, predicting eight observables from two input parameters, and provide new assessments of its predictions and their correlations. We then assess the ability to exclude this model using simulations of upcoming neutrino oscillation experiments including the medium-distance reactor experiments JUNO and RENO-50 and the long-baseline accelerator experiments DUNE and T2HK. We find that an accurate determination of the currently least well measured parameters, namely the atmospheric and solar angles and the CP phase δ\delta, provide crucial independent tests of the model. For θ13\theta_{13} and the two mass-squared differences, however, the model's exclusion requires a combination of measurements coming from a varied experimental programme. Our results show that the synergy and complementarity of future experiments will play a vital role in efficiently discriminating between predictive models of neutrino flavour, and hence, towards advancing our understanding of neutrino oscillations in the context of the flavour puzzle of the Standard Model

    Low energy radioactivity BG model in Super-Kamiokande detector from SK-IV data

    Get PDF
    n/

    Follow-up of GWTC-2 gravitational wave events with neutrinos from the Super-Kamiokande detector

    Get PDF
    n/

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M⊙_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M⊙_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance

    Combined pre-supernova alert system with KamLAND and Super-Kamiokande

    No full text
    corecore