5 research outputs found
Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates
Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion
Edible oleogels based on water soluble food polymers: preparation, characterization and potential application
Oil structuring using food-approved polymers is an emerging strategy and holds significant promise in the area of food and nutrition. In the current study, edible oleogels (containing >97 wt% of sunflower oil) were prepared using a combination of water soluble food polymers (methylcellulose and xanthan gum) and further evaluated for potential application as a shortening alternative. Microstructure studies (including cryo-SEM) and rheology measurements were conducted to gain more insights into the properties of these new types of oleogels. In addition, the functionality of oleogel as a shortening alternative was studied in terms of batter properties and the texture analysis of cakes and compared to the reference batches made using either oil, commercial shortening or cake margarine. Interestingly, while the batter properties (air incorporation, rheology and microstructure) of the oleogel batch were more close to the oil batch, the textural properties of cakes were significantly better than oil and resembled more to the cakes prepared using shortening and margarine
Polysaccharide-based oleogels prepared with an emulsion-templated approach
The preparation and characterization of oleogels structured by using a combination of a surface-active and a non-surface-active polysaccharide through an emulsion-templated approach is reported. Specifically, the oleogels were prepared by first formulating a concentrated oil-in-water emulsion, stabilized with a combination of cellulose derivatives and xanthan gum, followed by the selective evaporation of the continuous water phase to drive the network formation, resulting in an oleogel with a unique microstructure and interesting rheological properties, including a high gel strength, G′>4000 Pa, shear sensitivity, good thixotropic recovery, and good thermostability